Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas
详细信息    查看全文
  • 作者:Lingkui Zhao ; Caiting Li ; Xunan Zhang…
  • 关键词:Catalytic oxidation ; Manganese oxide ; Cerium oxide ; Elemental mercury ; Low temperature
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1471-1481
  • 全文大小:1,331 KB
  • 参考文献:Anchao Z, Wenwen Z, Jun S, Song H, Zhichao L, Jun X (2014) Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J 236:29–38. doi:10.​1016/​j.​cej.​2013.​09.​060 CrossRef
    Auzmendi-Murua I, Castillo Á, Bozzelli JW (2014) Mercury oxidation via chlorine, bromine, and iodine under atmospheric conditions: thermochemistry and kinetics. J Phy Chem A 118:2959–2975. doi:10.​1021/​jp412654s CrossRef
    Brown TD, Smith DN, Hargis RA, O’Dowd WJ (1999) Mercury measurement and its control: what we know, have learned, and need to further investigate. J Air Waste Manage Assoc 49:1–97. doi:10.​1080/​10473289.​1999.​10463906 CrossRef
    Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P, Pan WP (2008) Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ Sci Technol 42:256–261. doi:10.​1021/​es071281e CrossRef
    Casapu M, Kröcher O, Elsener M (2009) Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR. Appl Catal B-Environ 88:413–419. doi:10.​1016/​j.​apcatb.​2008.​10.​014 CrossRef
    Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B-Environ 19:103–117. doi:10.​1016/​S0926-3373(98)00060-5 CrossRef
    Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, Gao H (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energ Fuel 24:4250–4254. doi:10.​1021/​ef100377f CrossRef
    Fan X, Li C, Zeng G, Zhang X, Tao S, Lu P, Li S, Zhao Y (2012) The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas. Fuel Process Technol 104:325–331. doi:10.​1016/​j.​fuproc.​2012.​06.​003 CrossRef
    Guo Y, Liu Z, Liu Q, Huang Z (2008) Regeneration of a vanadium pentoxide supported activated coke catalyst-sorbent used in simultaneous sulfur dioxide and nitric oxide removal from flue gas: effect of ammonia. Catal Today 131:322–329. doi:10.​1016/​j.​cattod.​2007.​10.​032 CrossRef
    He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG (2013) Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials. Energ Fuel 27:4832–4839. doi:10.​1021/​ef400718n CrossRef
    He C, Shen B, Chen J, Cai J (2014) Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898. doi:10.​1021/​es5007719 CrossRef
    Ji L, Sreekanth PM, Smirniotis PG, Thiel SW, Pinto NG (2008) Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energ Fuel 22:2299–2306. doi:10.​1021/​ef700533q CrossRef
    Jin R, Liu Y, Wu Z, Wang H, Gu T (2010) Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere 78:1160–1166. doi:10.​1016/​j.​chemosphere.​2009.​11.​049 CrossRef
    Kamata H, Ueno S, Naito T, Yukimura A (2008) Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst. Ind Eng Chem Res 47:8136–8141. doi:10.​1021/​ie800363g CrossRef
    Khodayari R, Odenbrand CUI (2001) Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants. Appl Catal B-Environ 30:87–99. doi:10.​1016/​S0926-3373(00)00227-7 CrossRef
    Kong F, Qiu J, Liu H, Zhao R, Ai Z (2011) Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3. J Environ Sci 23:699–704. doi:10.​1016/​S1001-0742(10)60438-X CrossRef
    Larachi F, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl Surf Sci 195:236–250. doi:10.​1016/​S0169-4332(02)00559-7 CrossRef
    Li Y, Murphy P, Wua CY (2008a) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Process Technol 89:567–573. doi:10.​1016/​j.​fuproc.​2007.​10.​009 CrossRef
    Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ (2008b) Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environ Sci Technol 42:5304–5309. doi:10.​1021/​es8000272 CrossRef
    Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP (2010) Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. Environ Sci Technol 44:426–431. doi:10.​1021/​es9021206 CrossRef
    Li HL, Wu CY, Li Y, Zhang JY (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue Gas. Environ Sci Technol 45:7394–7400. doi:10.​1021/​es2007808 CrossRef
    Li H, Wu CY, Li Y, Zhang J (2012) Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl Catal B-Environ 111–112:381–388. doi:10.​1016/​j.​apcatb.​2011.​10.​021 CrossRef
    Li H, Wu CY, Li Y, Li L, Zhao Y, Zhang J (2013) Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst. Chem Eng J 219:319–326. doi:10.​1016/​j.​cej.​2012.​12.​100 CrossRef
    Liu CX, Chen L, Li JH, Ma L, Arandiyan H, Du Y, Xu JY, Hao JM (2012) Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environ Sci Technol 46:6182–6189. doi:10.​1021/​es3001773 CrossRef
    Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964. doi:10.​5194/​acp-10-5951-2010 CrossRef
    Pudasainee D, Lee SJ, Lee SH, Kim JH, Jang HN, Cho SJ, Seo YC (2010) Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants. Fuel 89:804–809. doi:10.​1016/​j.​fuel.​2009.​06.​022 CrossRef
    Qi G, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B-Environ 51:93–106. doi:10.​1016/​j.​apcatb.​2004.​01.​023 CrossRef
    Qu L, Li C, Zeng G, Zhang M, Fu M, Ma J, Zhan F, Luo D (2014) Support modification for improving the performance of MnOx–CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3. Chem Eng J 242:76–85. doi:10.​1016/​j.​cej.​2013.​12.​076 CrossRef
    Shang X, Hu G, He C, Zhao J, Zhang F, Xu Y, Zhang Y, Li J, Chen J (2012) Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5–WO3/TiO2) used in coal-fired power plant. J Ind Eng Chem 18:513–519. doi:10.​1016/​j.​jiec.​2011.​11.​070 CrossRef
    Shen B, Wang F, Liu T (2014a) Homogeneous MnOx-CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR. Powder Technol 253:152–157. doi:10.​1016/​j.​powtec.​2013.​11.​015 CrossRef
    Shen B, Wang Y, Wang F, Liu T (2014b) The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature. Chem Eng J 236:171–180. doi:10.​1016/​j.​cej.​2013.​09.​085 CrossRef
    Singh S, Nahil MA, Sun X, Wu C, Chen J, Shen B, Williams PT (2013) Novel application of cotton stalk as a waste derived catalyst in the low temperature SCR-deNOx process. Fuel 105:585–594. doi:10.​1016/​j.​fuel.​2012.​09.​010 CrossRef
    Srivastava RK, Hutson N, Martin B, Princiotta F, Staudt J (2006) Control of mercury emissions from coal-fired in electric utility boilers. Environ Sci Technol 40:1385–1393. doi:10.​1021/​es062639u CrossRef
    Svachula J, Alemany LJ, Ferlazzo N, Forzatti P, Tronconi E, Bregani F (1993) Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts. Ind Eng Chem Res 32:826–834. doi:10.​1021/​ie00017a009 CrossRef
    Tan Z, Su S, Qiu J, Kong F, Wang Z, Hao F, Xiang J (2012) Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal. Chem Eng J 195–196:218–225. doi:10.​1016/​j.​cej.​2012.​04.​083 CrossRef
    Tao S, Li C, Fan X, Zeng G, Lu P, Zhang X, Wen Q, Zhao W, Luo D, Fan C (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556. doi:10.​1016/​j.​cej.​2012.​09.​028 CrossRef
    Wang P, Su S, Xiang J, You H, Cao F, Sun L, Hu S, Zhang Y (2014) Catalytic oxidation of Hg0 by MnOx–CeO2/γ-Al2O3 catalyst at low temperatures. Chemosphere 101:49–54. doi:10.​1016/​j.​chemosphere.​2013.​11.​034 CrossRef
    Wiatros-Motyka MM, C-g S, Stevens LA, Snape CE (2013) High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel 109:559–562. doi:10.​1016/​j.​fuel.​2013.​03.​019 CrossRef
    Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9:2217–2220. doi:10.​1016/​j.​catcom.​2008.​05.​001 CrossRef
    Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem Eng Sci 76:120–128. doi:10.​1016/​j.​ces.​2012.​04.​012 CrossRef
    Yan NQ, Chen WM, Chen J, Qu Z, Guo YF, Yang SJ, Jia JP (2011) Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45:5725–5730. doi:10.​1021/​es200223x CrossRef
    Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J (2011a) Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Appl Catal B-Environ 101:698–708. doi:10.​1016/​j.​apcatb.​2010.​11.​012 CrossRef
    Yang SJ, Guo YF, Yan NQ, Wu DQ, He HP, Qu Z, Jia JP (2011b) Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: effect of chemical heterogeneity. Ind Eng Chem Res 50:9650–9656. doi:10.​1021/​ie2009873 CrossRef
    Zhang S, Li H, Zhong Q (2012) Promotional effect of F-doped V2O5-WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Appl Catal a-Gen 435:156–162. doi:10.​1016/​j.​apcata.​2012.​05.​049 CrossRef
    Zhang X, Shen B, Wang K, Chen J (2013) A contrastive study of the introduction of cobalt as a modifier for active components and supports of catalysts for NH3-SCR. J Ind Eng Chem 19:1272–1279. doi:10.​1016/​j.​jiec.​2012.​12.​028 CrossRef
    Zhao B, Liu X, Zhou Z, Shao H, Wang C, Si J, Xu M (2014) Effect of molybdenum on mercury oxidized by V2O5–MoO3/TiO2 catalysts. Chem Eng J 253:508–517. doi:10.​1016/​j.​cej.​2014.​05.​071 CrossRef
    Zhibo X, Chunmei L, Dongxu G, Xinli Z, Kuihua H (2013) Selective catalytic reduction of NOx with NH3 over iron–cerium mixed oxide catalyst: catalytic performance and characterization. J Chem Technol Biot 88:1258–1265. doi:10.​1002/​jctb.​3966 CrossRef
    Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062. doi:10.​1021/​es401681y CrossRef
  • 作者单位:Lingkui Zhao (1) (2)
    Caiting Li (1) (2)
    Xunan Zhang (1) (2)
    Guangming Zeng (1) (2)
    Jie Zhang (1) (2)
    Yin’e Xie (1) (2)

    1. College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People’s Republic of China
    2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg0) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg0 and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg0 oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80 % mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg0 oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg0 oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg0 oxidation and NO conversion. Besides, the Hg0 oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides. Keywords Catalytic oxidation Manganese oxide Cerium oxide Elemental mercury Low temperature

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700