Study on the removal of elemental mercury from simulated flue gas by Fe2O3-CeO2/AC at low temperature
详细信息    查看全文
  • 作者:Yan Wang ; Caiting Li ; Lingkui Zhao…
  • 关键词:Elemental mercury ; Activated coke ; Adsorption ; Catalytic oxidation ; Flue gas ; Low temperature
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:6
  • 页码:5099-5110
  • 全文大小:1,548 KB
  • 参考文献:Ayastuy J, Gil-Rodríguez A, González-Marcos M, Gutiérrez-Ortiz M (2006) Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction. Int J Hydrogen Energ 31:2231–2242. doi:10.​1016/​j.​ijhydene.​2006.​04.​008
    Cao Y, Chen B, Wu J et al (2007) Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal. Energ Fuel 21:145–156. doi:10.​1021/​ef0602426 CrossRef
    Delgado J, Pérez-Omil J, Rodríguez-Izquierdo J, Cauqui M (2006) The role of the carbonaceous deposits in the catalytic wet oxidation (CWO) of phenol. Catal Commun 7:639–643. doi:10.​1016/​j.​catcom.​2006.​02.​003 CrossRef
    Deng S, Liu H, Zhou W, Huang J, Yu G (2011) Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water. J Hazard Mater 186:360–1366CrossRef
    Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M (2000) Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl Surf Sci 165:288–302. doi:10.​1016/​S0169-4332(00)00443-8 CrossRef
    Dunham GE, DeWall RA, Senior CL (2003) Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process Technol 82:197–213. doi:10.​1016/​S0378-3820(03)00070-5 CrossRef
    Eom Y, Jeon SH, Ngo TA, Kim J, Lee TG (2008) Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst. Catal Lett 121:219–225. doi:10.​1007/​s10562-007-9317-0 CrossRef
    Eswaran S, Stenger HG (2005) Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energ Fuel 19:2328–2334. doi:10.​1021/​ef050087f CrossRef
    Fan X, Li C, Zeng G et al (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energ Fuel 24:4250–4254. doi:10.​1021/​ef100377f CrossRef
    Fan X, Li C, Zeng G et al (2012) Hg0 removal from simulated flue gas over CeO2/HZSM-5. Energ Fuel 26:2082–2089. doi:10.​1021/​ef201739p CrossRef
    Galbreath KC, Zygarlicke CJ (2000) Mercury transformations in coal combustion flue gas. Fuel Process Technol 65:289––10. doi:10.​1016/​S0378-3820(99)00102-2 CrossRef
    Gao X, Jiang Y, Zhong Y, Luo Z, Cen K (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 74:34––39. doi:10.​1016/​j.​jhazmat.​2009.​09.​112
    Gillot B, Laarj M, Kacim S (1997) Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3-xFexO4 (0 ≤ x ≤ 3) fine powders studied by thermogravimetry and IR spectroscopy. J Mater Chem 7:827–831. doi:10.​1039/​A607179A CrossRef
    Graat PC, Somers MA (1996) Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl Surf Sci 100:36–40. doi:10.​1016/​0169-4332(96)00252-8 CrossRef
    He C, Shen B, Chen J, Cai J (2014) Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898. doi:10.​1021/​es5007719 CrossRef
    Hsi HC, Lee HH, Hwang JF, Chen W (2010) Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals. J Air Waste Manage Assoc 60:514–522. doi:10.​3155/​1047-3289.​60.​5.​514 CrossRef
    Hua X, Zhou J, Li Q, Luo Z, Cen K (2010) Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energ Fuel 24:5426–5431. doi:10.​1021/​ef100554t CrossRef
    Huang G, Liaw BJ, Jhang CJ, Chen YZ (2009) Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Appl Catal A: Gen 358:7–12CrossRef
    Huang JY, Shao YX, Huang HG et al (2005) Binding mechanisms of methacrylic acid and methyl methacrylate on Si (111)-7 × 7 effect of substitution groups. J Phys Chem B 109:19831–19838. doi:10.​1021/​jp0531659 CrossRef
    Itaya Y, Kawahara K, Lee CW (2009) Dry gas cleaning process by adsorption of H2S into activated cokes in gasification of carbon resources. Fuel 8:1665–1672. doi:10.​1016/​j.​fuel.​2009.​04.​005 CrossRef
    Jastrząb K (2012) Properties of activated cokes used for flue gas treatment in industrial waste incineration plants. Fuel Process Technol 101:16–22. doi:10.​1016/​j.​fuproc.​2011.​05.​028 CrossRef
    Ji L, Sreekanth PM, Smirniotis PG, Thiel SW, Pinto NG (2008) Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energ Fuel 22:2299–2306. doi:10.​1021/​ef700533q CrossRef
    Kamata H, Ueno SI, Sato N, Naito T (2009) Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Process Technol 90:947–951. doi:10.​1016/​j.​fuproc.​2009.​04.​010 CrossRef
    Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A: Gen 327:61–269. doi:10.​1016/​j.​apcata.​2007.​05.​024 CrossRef
    Kaspar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298. doi:10.​1016/​S0920-5861(98)00510-0 CrossRef
    Li H, Li Y, Wu CY, Zhang J (2011a) Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas. Chem Eng J 69:86–93. doi:10.​1016/​j.​cej.​2011.​03.​003
    Li HL, Wu CY, Li Y, Zhang JY (2011b) CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400. doi:10.​1021/​es2007808 CrossRef
    Li J, Yan N, Qu Z et al (2010) Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environ Sci Technol 44:426–431. doi:10.​1021/​es9021206 CrossRef
    Li Y, Lee C, Gullett B (2003) Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel 82:451–457. doi:10.​1016/​S0016-2361(02)00307-1
    Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ (2008) Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environ Sci Technol 42:5304–5309. doi:10.​1021/​es8000272 CrossRef
    Li Z, Wu L, Liu H, Lan H, Qu J (2013) Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem Eng J 228:925–934. doi:10.​1016/​j.​cej.​2013.​05.​063 CrossRef
    Liu TY, Liao HC, Lin CC, Hu SH, Chen SY (2006) Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 22:5804–5809. doi:10.​1021/​la052363o CrossRef
    Milford JB, Pienciak A (2009) After the clean air mercury rule: prospects for reducing mercury emissions from coal-fired power plants. Environ Sci Technol 43:2669–2673. doi:10.​1021/​es802649u CrossRef
    Miller SJ, Dunham GE, Olson ES, Brown TD (2000) Flue gas effects on a carbon-based mercury sorbent. Fuel Process Technol 65:343–363. doi:10.​1016/​S0378-3820(99)00103-4 CrossRef
    Mullins D, Overbury S, Huntley D (1998) Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci 409:307–319. doi:10.​1016/​S0039-6028(98)00257-X CrossRef
    Norton GA, Yang H, Brown RC, Laudal DL, Dunham GE, Erjavec J (2003) Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel 82:107–116. doi:10.​1016/​S0016-2361(02)00254-5 CrossRef
    Ogriseck S, Vanegas GPG (2010) Experimental investigations of ammonia adsorption and nitric oxide reduction on activated coke. Chem Eng J 160:641–650. doi:10.​1016/​j.​cej.​2010.​04.​004 CrossRef
    Pavlish JH, Sondreal EA, Mann MD (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165. doi:10.​1016/​S0378-3820(03)00059-6 CrossRef
    Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W (2005) Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environ Sci Technol 39:1269–1274. doi:10.​1021/​es049202b CrossRef
    Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40:5601–5609. doi:10.​1021/​es060504i CrossRef
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167. doi:10.​1021/​jp0344601 CrossRef
    Sahoo S, Mohapatra M, Pandey B, Verma H, Das R, Anand S (2009) Preparation and characterization of α-Fe2O3–CeO2 composite. Mater Charact 60:25–431. doi:10.​1016/​j.​matchar.​2008.​11.​006
    Sakanishi K, Wu Z, Matsumura A (2005) Simultaneous removal of H2S and COS using activated carbons and their supported catalysts. Catal Today 104:94–100. doi:10.​1016/​j.​cattod.​2005.​03.​060 CrossRef
    Shawwa AR, Smith DW, Sego DC (2001) Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Res 35:745–749. doi:10.​1016/​S0043-1354(00)00322-5 CrossRef
    Shen B, Liu T, Zhao N, Yang X, Deng L (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J Environ Sci 22:1447–1454. doi:10.​1016/​S1001-0742(09)60274-6 CrossRef
    Wan H, Li D, Dai Y (2009) Effect of CO pretreatment on the performance of CuO/CeO2/γ-Al2O3 catalysts in CO + O2 reactions. Appl Catal A: Gen 60:26–2. doi:10.​1016/​j.​apcata.​2009.​02.​046 CrossRef
    Wan Q, Duan L, He K, Li J (2011) Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 170:512–517. doi:10.​1016/​j.​cej.​2010.​11.​060 CrossRef
    Wang X, Zheng Y, Lin J (2013) Highly dispersed Mn–Ce mixed oxides supported on carbon nanotubes for low-temperature NO reduction with NH3. Catal Commun 7:96–99. doi:10.​1016/​j.​catcom.​2013.​03.​035 CrossRef
    Wen X, Li C, Fan X et al (2011) Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3. Energ Fuel 25:2939–2944. doi:10.​1021/​ef200144j CrossRef
    Xie Y, Li C, Zhao L (2015) Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke. Appl Surf Sci 333:59–67. doi:10.​1016/​j.​apsusc.​2015.​01.​234 CrossRef
    Xu Z, Zhao L, Pang F, Wang L, Niu C (2007) Partial oxidation of methane to synthesis gas over hexaaluminates LaMAl11O19-δ catalysts. J Nat Gas Chem 6:0–63. doi:10.​1016/​S1003-9953(07)60027-9
    Yan N, Chen W, Chen J et al (2011) Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45:5725–5730. doi:10.​1021/​es200223x CrossRef
    Yang S, Zhu W, Jiang Z, Chen Z, Wang J (2006) The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts. Appl Surf Sci 25:8499–8505. doi:10.​1016/​j.​apsusc.​2005.​11.​067 CrossRef
    Yue L, Zhang XM (2009) Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles. J Alloy Compd 475:702–705. doi:10.​1016/​j.​jallcom.​2008.​07.​096 CrossRef
    Zhang A, Zheng W, Song J, Hu S, Liu Z, Xiang J (2014) Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J 236:29–38. doi:10.​1016/​j.​cej.​2013.​09.​060 CrossRef
  • 作者单位:Yan Wang (1) (2)
    Caiting Li (1) (2)
    Lingkui Zhao (1) (2)
    Yin’e Xie (1) (2)
    Xunan Zhang (1) (2)
    Guangming Zeng (1) (2)
    Huiyu Wu (1) (2)
    Jie Zhang (1) (2)

    1. College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People’s Republic of China
    2. Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg0) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg0 removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg0 removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg0 removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg0 removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg0 oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700