Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis
详细信息    查看全文
  • 作者:Markan Lopar (1)
    Ivna Vrana ?poljari? (1)
    Nikolina Cepanec (1)
    Martin Koller (2) (3) (4)
    Gerhart Braunegg (3)
    Predrag Horvat (1)
  • 关键词:Cupriavidus necator ; Elementary flux modes ; Glycerol ; PHB ; Yield space analysis
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:41
  • 期:6
  • 页码:913-930
  • 全文大小:
  • 参考文献:1. Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-(b-hydroxy-butyric) acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29-7 CrossRef
    2. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14:301-12 CrossRef
    3. Bushell ME, Sequeira SIP, Khannapho C, Zhao H, Chater KF, Butler MJ, Kierzek AM, Avignone-Rossa CA (2006) The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the / zwf mutation on antibiotic production in / Streptomyces coelicolor. Enzyme Microb Technol 39:1347-353 CrossRef
    4. Cavalheiro JMBT, Raposo RS, de Almeida MCMD, Cesário MT, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by / Cupriavidus necator using waste glycerol. Bioresour Technol 111:391-97 CrossRef
    5. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434-446 CrossRef
    6. Dr?ger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, Oldiges M, Kohlbacher O, Zell A (2009) Modeling metabolic networks in / C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst Biol 3:5. doi:10.1186/1752-0509-3-5 CrossRef
    7. Edwards JS, Ramakrishna R, Schilling CH, Palsson BO (1999) Metabolic flux balance analysis. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13-7
    8. Fleige C, Kroll J, Steinbüchel A (2011) Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in / Ralstonia eutropha H16. Appl Microbiol Biotechnol 91:769-76 CrossRef
    9. Franz A, Song HS, Ramkrishna D, Kienle A (2011) Experimental and theoretical analysis of poly(β-hydroxybutyrate) formation and consumption in / Ralstonia eutropha. Biochem Eng J 55:49-8 CrossRef
    10. García IL, López JA, Dorado MP, Kopsahelis N, Alexandri M, Papanikolaou S, Villar MA, Koutinas AA (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate- / co-3-hydroxyvalerate) production by / Cupriavidus necator. Bioresour Technol 130:16-2 CrossRef
    11. Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opi Biotechnol 11:180-86 CrossRef
    12. Grousseau E, Blanchet E, Déléris S, Albuquerque MG, Paul E, Uribelarrea JL (2013) Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in / Cupriavidus necator. Bioresour Technol 148:30-8 CrossRef
    13. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinform 11:489. doi:10.1186/1471-2105-11-489 CrossRef
    14. Kaddor C, Steinbüchel A (2011) Implications of various phosphoenolpyruvate-carbohydrate phosphotransferase system mutations on glycerol utilization and poly(3-hydroxybutyrate) accumulation in / Ralstonia eutropha H16, AMB Express. 1:16. Available via http://www.amb-express.com/content/1/1/16
    15. Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32:235-62 CrossRef
    16. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561-65 CrossRef
    17. Koller M, Salerno A, Braunegg G (2013) Polyhydroxyalkanoates: basics, production and applications of microbial biopolyesters. In: Kabasci S, Stevens C (eds) Bio-based plastics: materials and applications. Wiley, New York, pp 137-70 CrossRef
    18. K?nig C, Sammler I, Wilde E, Schlegel HG (1969) Konstitutive Glucose-6-phosphat-Dehydrogenase bei Glucose verwertenden Mutanten von einem kryptischen Wildstamm. Arch Mikrobiol 67:51-7 CrossRef
    19. Larhlimi A, Bockmayr A (2009) A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Appl Math 157:2257-266 CrossRef
    20. Lee JN, Shin HD, Lee YH (2003) Metabolic engineering of pentose phosphate pathway in / Ralstonia eutropha for enhanced biosynthesis of poly-β-hydroxybutyrate. Biotechnol Prog 19:1444-449 CrossRef
    21. Lopar M, Vrana??poljari? I, Atli? A, Koller M, Braunegg G, Horvat P (2013) Five-step continuous production of PHB analyzed by elementary flux modes, yield space analysis and high structured metabolic model. Biochem Eng J 79:57-0 CrossRef
    22. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264-76 PMID 14642354 CrossRef
    23. Orth JD, Thiele I, Palsson B? (2010) What is flux balance analysis? Nat Biotechnol 28:245-48. doi:10.1038/nbt.1614 CrossRef
    24. Papin JA, Price ND, Palsson B? (2002) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res 12:1889-900 CrossRef
    25. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400-05 CrossRef
    26. Park JM, Kim TY, Lee SY (2010) Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Proc Natl Acad Sci USA 107:14931-4936 CrossRef
    27. Park JM, Kim TY, Lee SY (2011) Genome-scale reconstruction and / in silico analysis of the / Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst Biol 5:101. doi:10.1186/1752-0509-5-101 CrossRef
    28. Pfeiffer T, Sánchez-Valdenebro I, Nu?o JC, Montero F, Schuster S (1999) METATOOL: for studying metabolic networks. Bioinformatics 15:251-57 CrossRef
    29. P?hlein A, Kusian B, Friedrich B, Daniel R, Bowien B (2011) Complete genome sequence of the type strain / Cupriavidus necator N-1. J Bacteriol 193:5017 CrossRef
    30. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, P?tter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas-bacterium / Ralstonia eutropha H16. Nat Biotechnol 24:1257-262 CrossRef
    31. Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BO (2003) Network-based analysis of metabolic regulation in the human red blood cell. J Theor Biol 225:185-94 CrossRef
    32. Raberg M, Kaddor C, Kusian B, Stahlhut G, Budinova R, Kolev N, Bowien B, Steinbüchel A (2012) Impact of each individual component of the mutated PTS(Nag) on glucose uptake and phosphorylation in / Ralstonia eutropha G+1. Appl Microbiol Biotechnol 95:735-44 CrossRef
    33. Raberg M, Peplinski K, Heiss S, Ehrenreich A, Voigt B, D?ring C, B?meke M, Hecker M, Steinbüchel A (2011) Proteomic and transcriptomic elucidation of the mutant / Ralstonia eutropha G+1 with regard to glucose utilization. Appl Environ Microbiol 77:2058-070 CrossRef
    34. Reinecke F, Steinbüchel A (2009) / Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91-08 CrossRef
    35. Schlegel HG, Gottschalk G (1965) Verwertung von Glucose durch eine Mutante von / Hydrogenomonas H16. Biochem Z 341:249-59
    36. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326-32 CrossRef
    37. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165-82. doi:10.1142/S0218339094000131 CrossRef
    38. Schwartz JM, Kanehisa M (2005) A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes. Bioinformatics 21:204-05 CrossRef
    39. Schweizer HP, Jump R, Po C (1997) Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpK) of / Pseudomonas aeruginosa. Microbiology 143:1287-297 CrossRef
    40. Sichwart S, Hetzler S, Br?ker D, Steinbüchel A (2011) Extension of the substrate utilization range of / Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose. Appl Environ Microbiol 77:1325-334 CrossRef
    41. Song HS, Morgan JA, Ramkrishna D (2009) Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose. Biotechnol Bioeng 103:984-002 CrossRef
    42. Song HS, Ramkrishna D (2009) Reduction of a set of elementary modes using yield analysis. Biotechnol Bioeng 102:554-68 CrossRef
    43. Steinbüchel A (1986) Expression of the / Escherichia coli / pfkA gene in / Alcaligenes eutrophus and in other gram-negative bacteria. J Bacteriol 166:319-27
    44. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190-93 CrossRef
    45. Stephanopoulos GN, Aristidou A, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego
    46. Varma A, Palsson B? (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994-98 CrossRef
    47. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930-931 CrossRef
    48. Vrana ?poljari? I, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Horvat P (2013) / In silico optimization and low structured kinetic model of poly[( / R)-3-hydroxybutyrate] synthesis by / Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol 168:625-35 CrossRef
    49. Vrana ?poljari? I, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M, Horvat P (2013) Mathematical modeling of poly[( / R)-3-hydroxyalkanoate] synthesis by / Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482-94 CrossRef
    50. Wang ZX, Bramer C, Steinbuchel A (2003) Two phenotypically compensating isocitrate dehydrogenases in / Ralstonia eutropha. FEMS Microbiol Lett 227:9-6 CrossRef
    51. Yu J, Si Y (2004) Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in / Ralstonia eutropha on short chain fatty acids. Biotechnol Prog 20:1015-024 CrossRef
  • 作者单位:Markan Lopar (1)
    Ivna Vrana ?poljari? (1)
    Nikolina Cepanec (1)
    Martin Koller (2) (3) (4)
    Gerhart Braunegg (3)
    Predrag Horvat (1)

    1. Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6/IV, 10000, Zagreb, Croatia
    2. Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
    3. ARENA, Arbeitsgemeinschaft für Ressourcenschonende and Nachhaltige Technologien, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
    4. Institute of Chemistry, University of Graz, Stremayrgasse 16/IV, 8010, Graz, Austria
  • ISSN:1476-5535
文摘
A metabolic network consisting of 48 reactions was established to describe intracellular processes during growth and poly-3-hydroxybutyrate (PHB) production for Cupriavidus necator DSM 545. Glycerol acted as the sole carbon source during exponential, steady-state cultivation conditions. Elementary flux modes were obtained by the program Metatool and analyzed by using yield space analysis. Four sets of elementary modes were obtained, depending on whether the pair NAD/NADH or FAD/FADH2 contributes to the reaction of glycerol-3-phosphate dehydrogenase (GLY-3-P DH), and whether 6-phosphogluconate dehydrogenase (6-PG DH) is present or not. Established metabolic network and the related system of equations provide multiple solutions for the simultaneous synthesis of PHB and biomass; this number of solutions can be further increased if NAD/NADH or FAD/FADH2 were assumed to contribute in the reaction of GLY-3-P DH. As a major outcome, it was demonstrated that experimentally determined yields for biomass and PHB with respect to glycerol fit well to the values obtained in silico when the Entner–Doudoroff pathway (ED) dominates over the glycolytic pathway; this is also the case if the Embden–Meyerhof–Parnas pathway dominates over the ED.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700