Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2
详细信息    查看全文
  • 作者:Yolima Carrillo ; Feike A. Dijkstra ; Dan LeCain ; Elise Pendall
  • 关键词:Arbuscular mycorrhizae ; Decomposition ; Elevated CO2 ; Grasses ; Priming ; Rhizosphere
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:45-55
  • 全文大小:644 KB
  • 参考文献:Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167:859–868. doi:10.​1111/​j.​1469-8137.​2005.​01458.​x CrossRef
    Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC (2009) Linking above- and belowground responses to global change at community and ecosystem scales. Glob Change Biol 15:914–929. doi:10.​1111/​j.​1365-2486.​2008.​01760.​x CrossRef
    Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214. doi:10.​1111/​j.​1469-8137.​2011.​03776.​x CrossRef
    Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246. doi:10.​1007/​s00572-008-0215-0 CrossRef
    Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. doi:10.​1038/​nature12901 CrossRef
    Ball BA, Carrillo Y, Molina M (2014) The influence of litter composition across the litter-soil interface on mass loss, nitrogen dynamics and the decomposer community. Soil Biol Biochem 69:71–82. doi:10.​1016/​j.​soilbio.​201310.​048 CrossRef
    Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM (2011) Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347:339–350CrossRef
    Carrillo Y, Dijkstra F, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2 N availability and root stoichiometry. Biogeochemistry 117:229–240. doi:10.​1007/​s10533-014-9954-5 CrossRef
    Cavigelli MA, Robertson GP, Klug ML (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113CrossRef
    Cheng WX, Dijkstra FA (2007) Theoretical proof and empirical confirmation of a continuous labeling method using naturally C-13-depleted carbon dioxide. J Integr Plant Biol 49:401–407. doi:10.​1111/​j.​1744-7909.​2007.​00387.​x CrossRef
    Cheng W, Kuzyakov Y (2005) Root effects on soil organic matter decomposition. In: Zobel R, Wright S (eds) Roots and soil management: interactions between roots and the soil. ASA-SSSA, Madison, Wisconsin
    Cheng L et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087. doi:10.​1126/​science.​1224304 CrossRef
    Clark NM, Apple ME, Nowak RS (2010) The effects of elevated CO2 on root respiration rates of two Mojave Desert shrubs. Glob Change Biol 16:1566–1575. doi:10.​1111/​j.​1365-2486.​2009.​02075.​x CrossRef
    Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol. doi:10.​3389/​fmicb.​2013.​00216
    Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Change Biol 19:621–636. doi:10.​1111/​gcb.​12045 CrossRef
    Endlweber K, Scheu S (2006) Establishing arbuscular mycorrhiza-free soil: a comparison of six methods and their effects on nutrient mobilization. Appl Soil Ecol 34:276–279. doi:10.​1016/​j.​apsoil.​2006.​04.​001 CrossRef
    Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412. doi:10.​1046/​j.​1365-2435.​1998.​00206.​x CrossRef
    Fontaine S et al (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96. doi:10.​1016/​j.​soilbio.​2010.​09.​017 CrossRef
    Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65CrossRef
    Goverde M, Erhardt A (2003) Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob Change Biol 9:74–83. doi:10.​1046/​j.​1365-2486.​2003.​00520.​x CrossRef
    Heijmans MPD, Klees H, de Visser W, Berendse F (2002) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecol 162:123–134. doi:10.​1023/​A:​1020368130679 CrossRef
    Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. doi:10.​1038/​35095041 CrossRef
    Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol 11:2057–2064CrossRef
    Johnson NC, Wolf J, Koch GW (2003) Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecol Lett 6:532–540. doi:10.​1046/​j.​1461-0248.​2003.​00460.​x CrossRef
    Johnson NC, Wolf J, Reyes MA, Panter A, Koch GW, Redman A (2005) Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Glob Change Biol 11:1156–1166. doi:10.​1111/​j.​1365-2486.​2005.​00967.​x CrossRef
    Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153. doi:10.​1111/​ele.​12085 CrossRef
    Kohler J, Caravaca F, Alguacil MD, Roldan A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716. doi:10.​1016/​j.​soilbio.​2009.​05.​014 CrossRef
    Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. doi:10.​1016/​j.​soilbio.​2010.​04.​003 CrossRef
    Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biol Biochem 41:54–60CrossRef
    Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant Soil 374:523–537. doi:10.​1007/​s11104-013-1899-2 CrossRef
    Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63CrossRef
    Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EVJ (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 85:37–50. doi:10.​1111/​1574-6941.​12096 CrossRef
    Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881. doi:10.​1111/​1462-2920.​12081 CrossRef
    Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502. doi:10.​1111/​j.​1461-0248.​2011.​01611.​x CrossRef
    Pendall E et al (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322CrossRef
    Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754. doi:10.​1111/​j.​1461-0248.​2004.​00620.​x CrossRef
    Rillig MC, Treseder KK, Allen MA (2002) Global change and mycorrhizal fungi. In: van der Heijden MGA (ed) Mycorrhizal ecology. Springer-Verlag, Berlin, pp 135–160CrossRef
    Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRef
    Staddon PL, Jakobsen I, Blum H (2004) Nitrogen input mediates the effect of free-air CO2 enrichment on mycorrhizal fungal abundance. Glob Change Biol 10:1678–1688CrossRef
    Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963CrossRef
    Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. doi:10.​1111/​j.​1469-8137.​2004.​01159.​x CrossRef
    Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200. doi:10.​1046/​j.​1469-8137.​2000.​00690.​x CrossRef
    van Groenigen KJ, Qi X, Osenberg CW, Luo YQ, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509. doi:10.​1126/​science.​1249534 CrossRef
    Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRef
    Verbruggen E, Veresoglou SD, Anderson IC, Caruso T, Hammer EC, Kohler J, Rillig MC (2013) Arbuscular mycorrhizal fungi—short-term liability but long-term benefits for soil carbon storage? New Phytol 197:366–368. doi:10.​1111/​nph.​12079 CrossRef
    Vestergard M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiol Ecol 64:78–89. doi:10.​1111/​j.​1574-6941.​2008.​00447.​x CrossRef
    Walthert L, Graf U, Kammer A, Luster J, Pezzotta D, Zimmermann S, Hagedorn F (2010) Determination of organic and inorganic carbon, delta C-13, and nitrogen in soils containing carbonates after acid fumigation with HCI. J Plant Nutr Soil Sci 173:207–216. doi:10.​1002/​jpln.​200900158 CrossRef
    Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461. doi:10.​1111/​j.​1461-0248.​2009.​01303.​x CrossRef
    Zelles L, Bai QY (1993) Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS. Soil Biol Biochem 25:495–507CrossRef
  • 作者单位:Yolima Carrillo (1)
    Feike A. Dijkstra (2)
    Dan LeCain (3)
    Elise Pendall (1) (4)

    1. Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
    2. Faculty of Agriculture and Environment, Center for Carbon, Water and Food, University of Sydney, Camden, NSW, Australia
    3. USDA, Agricultural Research Service, Fort Collins, CO, USA
    4. Department of Botany, University of Wyoming, Laramie, Wyoming, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
Arbuscular mycorrhizal (AMF) function has mostly been studied from the plant perspective, but there is a shortage of empirical assessments of their ecosystem level impacts on soil carbon (C). Our understanding of the role of AMF on C processing belowground has been restricted mostly to fresh plant residues, not stabilized soil organic matter. The mechanisms by which elevated CO2 (eCO2) alter soil C remain an open question but AMF likely play a role via C and nutrients, which could in turn, be plant species dependent. We assessed AMF as mediators of C processing in the rhizosphere of two grasses under eCO2. We exposed a C4 and a C3 grass to a combination of ambient and eCO2 with and without modification of the AMF communities and using stable isotopes quantified the respiration of native soil C (as rhizosphere priming), its contribution to dissolved and microbial C and the final remaining C pool. The AMF treatment impacted soil C respiration under the C3-plant and only under eCO2. eCO2 suppressed decomposition (negative priming) but this effect disappeared when the AMF community was reduced. In contrast to studies of fresh plant residues suggesting that AMF can enhance C loss, our observations indicate that AMF may promote C storage in the soil organic matter pool. Results support that AMF can mediate the effect of eCO2 on soil C in the rhizosphere of some plant species, a potential mechanism explaining variation in impacts of eCO2 on soil C storage and C balances across species and ecosystems. Keywords Arbuscular mycorrhizae Decomposition Elevated CO2 Grasses Priming Rhizosphere

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700