A Review Study on Past 40 Years of Research on Effects of Tropospheric O3 on Belowground Structure, Functioning, and Processes of Trees: a Linkage with Potential Ecological Implications
详细信息    查看全文
  • 作者:Eugenios Agathokleous ; Costas J. Saitanis ; Xiaona Wang…
  • 关键词:Air pollution ; Carbon cycle ; Changing environment ; Climate change ; Ecosystems ; Ozone
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:829 KB
  • 参考文献:Adams, M. B., Kelly, J. M., & Edwards, N. T. (1988). Growth of Pinus taeda L. seedlings varies with family and ozone exposure level. Water, Air, and Soil Pollution, 38, 137–150.
    Adams, M. B., Kelly, J. M., Taylor, G. E., & Edwards, N. T. (1990). Growth of 5 families of Pinus taeda L. during 3 years of ozone exposure. New Phytologist, 116, 689–694.CrossRef
    Agathokleous, E., Koike, T., Watanabe, M., Hoshika, Y., & Saitanis, C. J. (2015a). Ethylene-di-urea (EDU), an effective phytoprotectant against O3 deleterious effects and a valuable research tool. Journal of Agricultural Meteorology, 71, 185–195.
    Agathokleous, E., Koike, T., & Saitanis, C. (2015b). Tropospheric O3, the nightmare of wild plants: a review study. Journal of Agricultural Meteorology, 71(2), 142–152.
    Ahad, S., Tanveer, S., & Malik, T. A. (2014). Bioactive potential of wild edible mushrooms and need for their conservation. J Yeast Fungal Res, 5, 110–118.
    Ahlstrom, A., Schurgers, G., Arneth, A., & Smith, B. (2012). Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environmental Research Letters, 7, 044008.CrossRef
    Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661.CrossRef
    Amundson, R. G., Alscher, R. G., Fellows, S., Rubin, G., Fincher, J., Vanleuken, P., & Weinstein, L. H. (1991). Seasonal changes in the pigments, carbohydrates and growth of red spruce as affected by exposure to ozone for two growing seasons. New Phytologist, 118, 127–137.CrossRef
    Andersen, C. P. (2003). Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213–228.CrossRef
    Andersen, C. P., & Rygiewicz, P. T. (1995). Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. New Phytologist, 131, 471–480.CrossRef
    Andersen, C. P., & Scagel, C. F. (1997). Nutrient availability alters belowground respiration of ozone-exposed Ponderosa pine. Tree Physiology, 17, 377–387.CrossRef
    Andersen, C. P., Hogsett, W. E., Wessling, R., & Plocher, M. (1991). Ozone decreases spring root growth and root carbohydrate content in Ponderosa pine the year following exposure. Canadian Journal of Forest Research, 21, 1288–1291.CrossRef
    Andersen, C. P., Wilson, R., Plocher, M., & Hogsett, W. E. (1997). Carryover effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. Tree Physiology, 17, 805–811.CrossRef
    Andersen, C. P., Hogsett, W. E., Plocher, M., Rodecap, K., & Lee, E. H. (2001). Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings. Tree Physiology, 21, 319–327.CrossRef
    Antos, J. A., & Halpern, C. H. (1997). Root system differences among species: implications for early successional changes in forests of Western Oregon. American Midland Naturalist, 138, 97–108.CrossRef
    Anttonen, S., & Karenlampi, L. (1995). Fatty acids, starch and biomass of Scots pine needles and roots in open-air ozone exposure. Trees – Struct Funct, 10, 74–82.CrossRef
    Bambridge, L., Harmer, R., & Macleod, R. (1996). Root and shoot growth, assimilate partitioning and cell proliferation in roots of sitka spruce (Picea sitchensis) grown in filtered and unfiltered chambers. Environmental Pollution, 92, 343–347.CrossRef
    Bermejo, V., Gimeno, B. S., Sanz, J., De la Torre, D., & Gil, J. M. (2003). Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury. Atmospheric Environment, 37, 4667–4677.CrossRef
    Beyers, J. L., Riechers, G. H., & Temple, P. J. (1992). Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.). New Phytologist, 122, 81–90.CrossRef
    Bielenberg, D. G., Lynch, J. R., & Pell, E. J. (2001). A decline in nitrogen availability affects plant responses to ozone. New Phytologist, 151, 413–425.CrossRef
    Blaschke, H. (1990). Mycorrhizal populations and fine root development on Norway spruce exposed to controlled doses of gaseous pollutants and simulated acidic rain treatments. Environmental Pollution, 68, 409–418.CrossRef
    Braun, S., Zugmaier, U., Thomas, V., & Fluckiger, W. (2004). Carbohydrate concentrations in different plant parts of young beech and spruce along a gradient of ozone pollution. Atmospheric Environment, 38, 2399–2407.CrossRef
    Broadmeadow, M. S. J., & Jackson, S. B. (2000). Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist, 146, 437–451.
    Bucker, J., & Ballach, H. J. (1992). Alterations in carbohydrate-levels in leaves of Populus due to ambient air-pollution. Physiologia Plantarum, 86, 512–517.CrossRef
    Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124–138.CrossRef
    Cannon, W. N. J., Roberts, B. R., & Barger, J. H. (1993). Growth and physiological response of water-stressed yellow-poplar seedlings exposed to chronic ozone fumigation and ethylenediurea. Forest Ecology and Management, 61, 61–73.CrossRef
    Cao, M., & Woodward, F. I. (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249–252.CrossRef
    Chappelka, A. H., & Samuelson, L. J. (1998). Ambient ozone effects on forest trees of the eastern United States: a review. New Phytologist, 139, 91–108.CrossRef
    Chappelka, I. A. H., Chevone, B. I., & Burk, T. E. (1985). Growth response of yellow-poplar (Liriodendron tulipifera L.) seedlings to ozone, sulfur dioxide, and simulated acidic precipitation, alone and in combination. Environmental and Experimental Botany, 25, 233–244.CrossRef
    Chappelka, A. H., Chevone, B. I., & Seiler, J. R. (1988). Growth and physiological responses of yellow-poplar seedlings exposed to ozone and simulated acidic rain. Environmental Pollution, 49, 1–18.CrossRef
    Chorianopoulou, S. N., Saridis, Y. I., Dimou, M., Katinakis, P., & Bouranis, D. L. (2015). Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3, and ZmYS1, in S deprived maize plants. Front Plant Sci, 6, 257.CrossRef
    Coleman, M. D., Dickson, R. E., Isebrands, J. G., & Karnosky, D. F. (1995a). Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 15, 593–604.CrossRef
    Coleman, M. D., Isebrands, J. G., Dickson, R. E., & Karnosky, D. F. (1995b). Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 15, 585–592.CrossRef
    Cooley, D. R., & Manning, W. J. (1987). The impact of ozone on assimilate partitioning in plants: a review. Environmental Pollution, 47, 95–113.CrossRef
    Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecology, 13, 150–156.CrossRef
    Davis, D. D., & Skelly, J. M. (1992). Growth response of four species of eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. Journal of the Air & Waste Management Association, 42, 309–311.CrossRef
    De Bauer, M. L., & Hernandez-Tejeda, T. (2007). A review of ozone-induced effects on the forests of central Mexico. Environmental Pollution, 147, 446–453.CrossRef
    Diaz de Quijano, M. D., Schaub, M., Bassin, S., Volk, M., & Penuelas, J. (2012). Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation. Environmental Pollution, 169, 250–257.CrossRef
    Dickson, R. E., Coleman, M. D., Riemenschneider, D. E., Isebrands, J. G., Hogan, G. D., & Karnosky, D. F. (1998). Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3. Canadian Journal of Forest Research, 28, 1706–1716.CrossRef
    Dickson, R. E., Coleman, M. D., Pechter, P., & Karnosky, D. (2001). Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Environmental Pollution, 115, 319–334.CrossRef
    Dueck, T. A., Zuin, A., & Elderson, J. (1998). Influence of ammonia and ozone on growth and drought sensitivity of Pinus sylvestris. Atmospheric Environment, 32, 545–550.CrossRef
    Edwards, N. T., Taylor, G. E., Adams, M. B., Simmons, G. L., & Kelly, J. M. (1990). Ozone, acidic rain and soil magnesium effects on growth and foliar pigments of Pinus taeda L. Tree Physiology, 6, 95–104.CrossRef
    Edwards, G. S., Edwards, N. T., Kelly, J. M., & Mays, P. A. (1991). Ozone, acidic precipitation, and soil Mg effects on growth and nutrition of loblolly-pine seedlings. Environmental and Experimental Botany, 31, 67–78.CrossRef
    Edwards, N. T., Edwards, G. L., Kelly, J. M., & Taylor, G. E. (1992a). Three-year growth-responses of Pinus taeda L. to simulated rain chemistry, soil magnesium status, and ozone. Water, Air, and Soil Pollution, 63, 105–118.CrossRef
    Edwards, G. S., Kelly, J. M., & Mays, P. A. (1992b). Ozone, acidic precipitation, and soil Mg impacts on soil and loblolly pine seedling nutrient status after 3 growing seasons. Water, Air, and Soil Pollution, 63, 281–294.CrossRef
    Edwards, G. S., Wullschleger, S. D., & Kelly, J. M. (1994). Growth and physiology of northern red oak: preliminary comparisons of mature tree and seedling responses to ozone. Environmental Pollution, 83, 215–221.CrossRef
    Emberson, L. D., Buker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., et al. (2009). A comparison of North-American and Asia exposure-response data for ozone effects on crop yields. Atmospheric Environment, 43, 1945–1953.CrossRef
    Eshel, A., & Beeckman, T. (2013). Plant roots: The hidden half, 4th edn. CRC Press.
    Estes, B. L., Enebak, S. A., & Chappelka, A. H. (2004). Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure. Canadian Journal of Forest Research, 34, 1410–1416.CrossRef
    Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology, 14, 2696–2708.
    Feng, Z., Hu, E., Wang, X., Jiang, L., & Liu, X. (2015). Ground-level O3 pollution and its impacts on food crops in China: a review. Environmental Pollution, 199, 42–48.CrossRef
    Finlay, R. D. (2004). Mycorrhizal fungi and their multifunctional roles. Mycologist, 18, 91–96.CrossRef
    Friend, A. L., Tomlinson, P. T., Dickson, R. E., Oneill, E. G., Edwards, N. T., & Taylor, G. E. (1992). Biochemical composition of loblolly pine reflects pollutant exposure. Tree Physiology, 11, 35–47.CrossRef
    Fuzy, A., Bothe, H., Molnar, E., & Biro, B. (2014). Mycorrhizal symbiosis effects on growth of chalk false
    ome (Brachypodium pinnatum) are dependent on the environmental light regime. Journal of Plant Physiology, 171, 1–6.CrossRef
    Ganev, K., Prodanova, M., Syrakov, D., & Miloshev, N. (2014). Air pollution transport in the Balkan region and country-to-country pollution exchange between Romania, Bulgaria and Greece. Ecological Modelling, 217, 255–269.CrossRef
    Gaucher, C., Costanzo, N., Afif, D., Mauffette, Y., Chevrier, N., & Dizengremel, P. (2003). The impact of elevated ozone and carbon dioxide on young Acer saccharum seedlings. Physiologia Plantarum, 117, 392–402.CrossRef
    Gerant, D., Podor, M., Grieu, P., et al. (1996). Carbon metabolism enzyme activities and carbon partitioning in Pinus halepensis Mill exposed to mild drought and ozone. Journal of Plant Physiology, 148, 142–147.CrossRef
    Gorissen, A., Joosten, N. N., Smeulders, S. M., & van Veen, J. A. (1994). Effects of short-term ozone exposure and soil water availability on the carbon economy of juvenile Douglas-fir. Tree Physiology, 14, 647–657.CrossRef
    Grantz, D. A., Gunn, S., & Vu, H.-B. (2006). O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant, Cell and Environment, 29, 1193–1209.CrossRef
    Grulke, N. E., Andersen, C. P., Fenn, M. E., & Miller, P. R. (1998). Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California. Environmental Pollution, 103, 63–73.CrossRef
    Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–146.CrossRef
    Heck, W. W., Heagle, A. S., & Shriner, D. S. (1986). Effects on vegetation: native, crops, forests. In A. S. Stem (Ed.), Air pollution (Vol. 6, pp. 247–350). New York: Academic Press.
    Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.CrossRef
    Horton, S. J., Reinert, R. A., & Heck, W. W. (1990). Effects of ozone on three open-pollinated families of Pinus taeda L. grown in two substrates. Environmental Pollution, 65, 279–292.CrossRef
    Hoshika, Y., Tatsuda, S., Watanabe, M., Wang, X., Watanabe, Y., Saito, H., & Koike, T. (2013a). Effect of ambient ozone at the somma of Lake Mashu on growth and leaf gas exchange in Betula ermanii and Betula platyphylla var. japonica. Environmental and Experimental Botany, 90, 12–16.CrossRef
    Hoshika, Y., Pecori, F., Conese, I., Bardelli, T., Marchi, E., Manning, W. J., Badea, O., & Paoletti, E. (2013b). Effects of a three-year exposure to ambient ozone on biomass allocation in poplar using ethylenediurea. Environmental Pollution, 180, 299–303.CrossRef
    Huhta, V. (2007). The role of soil fauna in ecosystems: a historical review. Pedobiologia, 50, 489–495.CrossRef
    Huttunen, S., & Manninen, S. (2013). A review of ozone responses in Scots pine (Pinus sylvestris). Environmental and Experimental Botany, 90, 17–31.CrossRef
    Inclan, R., Gimeno, B. S., Dizengremel, P., & Sanchez, M. (2005). Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environmental Pollution, 137, 517–524.CrossRef
    Izuta, T., & Nakaji, T. (2003). Effects of high nitrogen load and ozone on forest tree species. European Journal of Forest Research, 6, 155–170.
    Izuta, T., Umemoto, M., Horie, K., Aoki, M., & Totsuka, T. (1996). Effects of ambient levels of ozone on growth, gas exchange rates and chlorophyll contents of Fagus crenata seedlings. Journal of the Society of Atmospheric Environment, 31–2, 95–105.
    Jensen, K. F., & Dochinger, L. S. (1974). Responses of hybrid poplar cuttings to chronic and acute levels of ozone. Environmental Pollution, 6, 289–295.CrossRef
    Kainulainen, P., Utriainen, J., Holopainen, J. K., Oksanen, J., & Holopainen, T. (2000). Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds. Global Change Biology, 6, 345–355.CrossRef
    Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., Bresta, P., Stavroulaki, V., & Sumbelle, S. (2014). “Carbon gain vs. water saving, growth vs. defence”: two dilemmas with soluble phenolics as a joker. Plant Science, 227, 21–27.CrossRef
    Karlsson, P. E., Medin, E. L., Wickstrom, H., Sellden, G., Wallin, G., Ottosson, S., & Skarby, L. (1995). Ozone and drought stress: interactive effects on the growth and physiology of Norway spruce (Picea abies (L.) Karst.). Water, Air, and Soil Pollution, 85, 1325–1330.CrossRef
    Karlsson, P. E., Medin, E. L., Wallin, G., Sellden, G., & Skarby, L. (1997). Effects of ozone and drought stress on the physiology and growth of two clones of Norway spruce (Picea abies). New Phytologist, 136, 265–275.CrossRef
    Karlsson, P. E., Medin, E. L., Sellden, G., Wallin, G., Ottosson, S., Pleijel, H., & Skarby, L. (2002). Impact of ozone and reduced water supply on the biomass accumulation of Norway spruce saplings. Environmental Pollution, 119, 237–244.CrossRef
    Karlsson, P. E., Uddling, J., Skarby, L., Wallin, G., & Sellden, G. (2003). Impact of ozone on the growth of birch (Betula pendula) saplings. Environmental Pollution, 124, 485–495.CrossRef
    Karnosky, D. F., Witter, J. A., Gagnon, Z. E., & Reed, D. D. (1992). Effects of genotype on the response of Populus tremuloides Michx. to ozone and nitrogen deposition. Water, Air, and Soil Pollution, 62, 189–199.CrossRef
    Karnosky, D. F., Gagnon, Z. E., Dickson, R. E., Coleman, M. D., Lee, E. H., & Isebrands, J. G. (1996). Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research, 26, 23–37.CrossRef
    Karnosky, D. F., Pregitzer, K. S., Zak, D. R., Kubiske, M. E., Hendrey, G. R., Weinstein, D., Nosal, M., & Percy, K. E. (2005). Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment, 28, 965–981.CrossRef
    Kasurinen, A., Kokko-Gonzales, P., Riikonen, J., Vapaavuori, E., & Holopainen, T. (2004). Soil CO2 efflux of two silver birch clones exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biology, 10, 1654–1665.CrossRef
    Kasurinen, A., Keinanen, M. M., Kaipainen, S., Nilsson, L.-O., Vapaavuoris, E., Kontro, M. H., & Holopainen, T. (2005). Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biology, 11, 1167–1179.CrossRef
    Keane, K. D., & Manning, W. J. (1988). Effects of ozone and simulated acid rain on birch seedling growth and formation of ectomycorrhizae. Environmental Pollution, 52, 55–65.CrossRef
    Kelly, J. M., Taylor, G. E., Jr., Edwards, N. T., Adams, M. B., Edwards, G. S., & Friend, A. L. (1993). Growth, physiology, and nutrition of loblolly pine seedlings stressed by ozone and acidic precipitation: a summary of the ROPIS-South Project. Water, Air, and Soil Pollution, 69, 363–391.CrossRef
    Kelly, J. M., Samuelson, L., Edwards, G., Hanson, P., Kelting, D., Mays, A., & Wullschleger, S. (1995). Are seedlings reasonable surrogates for trees? An analysis of ozone impacts on Quercus rubra. Water, Air, and Soil Pollution, 85, 1317–1324.CrossRef
    Kim, Y.-S. (2013). Soil-atmosphere exchange of CO2, CH4 and N2O in Northern temperate forests: effects of elevated CO2 concentration, N deposition and forest fire. European Journal of Forest Research, 16, 1–43.CrossRef
    King, J. S., Kubiske, M. E., Pregitzer, K. S., et al. (2005). Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist, 168, 623–635.CrossRef
    Kleanthous, S., Vrekoussis, M., Mihalopoulos, N., Kalabokas, P., & Lelieveld, J. (2014). On the temporal and spatial variation of ozone in Cyprus. Science of the Total Environment, 476–477, 677–687.CrossRef
    Koike, T., Kitao, M., Quoreshi, M. A., & Matsuura, Y. (2003). Growth characteristics of root-shoot relations of three birch seedlings raised under different water regimes. Plant and Soil, 255, 303–310.CrossRef
    Koike, T., Watanabe, M., Hoshika, Y., Kitao, M., Matsumura, H., Funada, R., & Izuta, T. (2013). Effects of ozone on forest ecosystems in East and Southeast Asia. In R. Matyssek, N. Clarke, P. Cudlin, T. N. Mikkelsen, J. P. Tuovinen, G. Wieser, & E. Paoletti (Eds.), Climate change, air pollution and global challenges: understanding and solutions from forest research. A COST action (pp. 371–390). Oxford: Elsevier.
    Koike, T., Watanabe, M., Watanabe, Y., Agathokleous, E., Eguchi, N., Takagi, K., Satoh, F., Kitaoka, S., & Funada, R. (2015). Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air CO2 Enrichment). Journal of Agricultural Meteorology, 71, 174–184.
    Kouterick, K. B., Skelly, J. M., Fredericksen, T. S., Steiner, K. C., Kolb, T. E., & Ferdinand, J. A. (2000). Foliar injury, leaf gas exchange and biomass responses of black cherry (Prunus serotina Ehrh.) half-sibling families to ozone exposure. Environmental Pollution, 107, 117–126.CrossRef
    Kozovits, A. R., Matyssek, R., Winkler, J. B., Gottlein, A., Blaschke, H., & Grams, T. E. E. (2005a). Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytologist, 167, 181–196.CrossRef
    Kozovits, A. R., Matyssek, R., Blaschke, H., Gottlein, A., & Grams, T. E. E. (2005b). Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Global Change Biology, 11, 1387–1401.CrossRef
    Kress, L. W., & Skelly, J. M. (1982). Response of several eastern forest tree species to chronic doses of ozone and nitrogen dioxide. Plant Diseases, 66, 1149–1152.CrossRef
    Kytoviita, M. M., Pelloux, J., Fontaine, V., Botton, B., & Dizengremel, P. (1999). Elevated CO2 does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiologia Plantarum, 106, 370–377.CrossRef
    Kytoviita, M. M., Le Thiec, D., & Dizengremel, P. (2001). Elevated CO2 and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont. Physiologia Plantarum, 111, 305–312.CrossRef
    Landolt, W., GunthardtGoerg, M. S., Pfenninger, I., Einig, W., Hampp, R., Maurer, S., & Matyssek, R. (1997). Effect of fertilization on ozone-inducedchanges in the metabolism of birch (Betula pendula) leaves. New Phytologist, 137, 389–397.CrossRef
    Landolt, W., Buhlmann, U., Bleuler, P., & Bucher, J. B. (2000). Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Environmental Pollution, 109, 473–478.CrossRef
    Le Thiec, D., & Manninen, S. (2003). Ozone and water deficit reduced growth of Aleppo pine seedlings. Plant Physiology and Biochemistry, 41, 55–63.CrossRef
    Lippert, M., Haeberle, K. H., Steiner, K., Payer, H. D., & Rehfuess, K. E. (1996). Interactive effects of elevated CO2 and O3 on photosynthesis and biomass production of clonal 5-year-old Norway spruce (Picea abies (L.) Karst.) under different nitrogen nutrition and irrigation treatments. Trees – Struct Funct, 10, 382–392.
    Loats, K. V., & Rebbeck, J. (1999). Interactive effects of ozone and elevated carbon dioxide on the growth and physiology of black cherry, green ash, and yellow-poplar seedlings. Environmental Pollution, 106, 237–248.CrossRef
    Lorenzini, G., & Nali, C. (2014). A challenging job: plant pathology in the urban environment. Agrochimica, 58, 206–221.
    Lorenzini, G., & Saitanis, C. (2003). Ozone: a novel plant “pathogen”. In L. di Toppi Sanita & B. Pawlik-Skowronska (Eds.), Abiotic stresses in plants (pp. 205–229). Netherlands: Kluwer Academic Publishers.CrossRef
    Lukac, M. (2012). Fine root turnover. In S. Mancuso (Ed.), Measuring roots: an updated approach (pp. 363–373). Berlin: Springer.CrossRef
    Maire, V., Wright, I. J., Prentice, I. C., et al. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24, 706–717.CrossRef
    Manning, W. J., Flagler, R. B., & Frenkel, M. A. (2003). Assessing plant response to ambient ozone: growth of ozone-sensitive loblolly pine seedlings treated with ethylenediurea or sodium erythorbate. Environmental Pollution, 126, 73–81.CrossRef
    Matsumura, H. (2001). Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open-top chamber study conducted in Japan. Water, Air, and Soil Pollution, 130, 959–964.CrossRef
    Matyssek, R., Gunthardt Goerg, M. S., Sauer, M., & Keller, T. (1992). Seasonal growth, delta carbon-13 in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees – Struct Funct, 6, 69–76.CrossRef
    Matyssek, R., Keller, T., & Koike, T. (1993a). Branch growth and leaf gas-exchange of Populus tremula exposed to low ozone concentrations throughout 2 growing seasons. Environmental Pollution, 79, 1–7.CrossRef
    Matyssek, R., Gunthardtgoerg, M. S., Landolt, W., & Keller, T. (1993b). Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus × euramericana). Environmental Pollution, 81, 207–212.CrossRef
    Matyssek, R., Gunthardt-Goerg, M. S., Maurer, S., & Keller, T. (1995). Nighttime exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiology, 15, 159–165.CrossRef
    Matyssek, R., Gunthardt-Goerg, M. S., Maurer, S., & Christ, R. (2002). Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition. Trees, 16, 375–385.CrossRef
    Matyssek, R., Wieser, G., Calfapietra, C., de Vries, W., Dizengremel, P., Ernst, D., Jolivet, Y., Mikkelsen, T. N., Mohren, G. M. J., Le Thiec, D., Tuovinen, J. P., Weatherall, A., & Paoletti, E. (2012). Forests under climate change and air pollution: Gaps in understanding and future directions for research. Environmental Pollution, 160, 57–65.CrossRef
    Matyssek, R., Clarke, N., Cudlin, P., Mikkelsen, T. N., Tuovinen, J.-P., Wieser, G., & Paoletti, E. (2013). Climate change, air pollution and global challenges: understanding and solutions from forest research. A COST action (p. 648). Oxford: Elsevier.
    Maurer, S., & Matyssek, R. (1997). Nutrition and the ozone sensitivity of birch (Betula pendula) II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees, 12, 11–20.CrossRef
    Meier, S., Grand, L. F., Schoeneberger, M. M., Reinert, R. A., & Bruck, R. I. (1990). Growth, ectomycorrhizae and nonstructural carbohydrates of loblolly pine seedlings exposed to ozone and soil water deficit. Environmental Pollution, 64, 11–27.CrossRef
    Moraes, R. G., Bulbovas, P., Furlan, C. M., Domingos, M., Meirelles, S. T., Delitti, W. B. C., & Sanz, M. J. (2006). Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation. Ecotoxicology and Environmental Safety, 63, 306–312.CrossRef
    Mortensen, L. M. (1995). Effect of carbon dioxide concentration on biomass production and partitioning in Betula pubescens Ehrh. seedlings at different ozone and temperature regimes. Environmental Pollution, 87, 337–343.CrossRef
    Mortensen, L. M., & Skre, O. (1990). Effects of low ozone concentrations on growth of Betula pubescens Ehrh, Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytologist, 115, 165–170.CrossRef
    Muller, M., Kohler, B., Tausz, M., Grill, D., & Lutz, C. (1996). The assessment of ozone stress by recording chromosomal aberrations in root tips of spruce trees [Picea abies (L.) Karst]. Journal of Plant Physiology, 148, 160–165.CrossRef
    Munoz, C., Paulino, L., Monreal, C., & Zagal, E. (2010). Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean Journal of Agricultural Research, 70(3), 485–497.CrossRef
    Nakaji, T., & Izuta, T. (2001). Effects of ozone and/or excess soil nitrogen on growth, needle gas exchange rates and Rubisco contents of Pinus densiflora seedlings. Water, Air, and Soil Pollution, 130, 971–976.CrossRef
    Nakaji, T., Kobayashi, T., Kuroha, M., Omori, K., Matsumoto, Y., Yonekura, T., Watanabe, K., Utriainen, J., & Izuta, T. (2004). Growth and nitrogen availability of red pine seedlings under high nitrogen load and elevated ozone. Water, Air, & Soil Pollution: Focus, 4, 277–287.CrossRef
    Neufeld, H. S., Lee, E. H., Renfro, J. R., Hacker, W. D., & Yu, B. H. (1995). Sensitivity of seedlings of black cherry (Prunus serotina Ehrh.) to ozone in Great Smoky Mountains National Park.1. Exposure–response curves for biomass. New Phytologist, 130, 447–459.CrossRef
    Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends in Microbiology, 18, 365–373.CrossRef
    Nikolova, P. S., Andersen, C. P., Blaschke, H., Matyssek, R., & Haberle, K. H. (2010). Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environmental Pollution, 158, 1071–1078.CrossRef
    Noble, R., Jensen, K. F., Ruff, B. S., & Loats, K. (1992). Response of Acer saccharum seedlings to elevated carbon dioxide and ozone. Ohio Journal of Science, 92, 60–62.
    Novak, K., Schaub, M., Fuhrer, J., Skelly, J. M., Frey, B., & Krauchi, N. (2008). Ozone effects on visible foliar injury and growth of Fagus sylvatica and Viburnum lantana seedlings grown in monoculture or in mixture. Environmental and Experimental Botany, 62, 212–220.CrossRef
    Oksanen, E., & Saleem, A. (1999). Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth.). Plant, Cell and Environment, 22, 1401–1411.CrossRef
    Oksanen, E., Amores, G., Kokko, H., Santamaria, J. M., & Karenlampi, L. (2001). Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides × P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171–1181.CrossRef
    Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., & Vapaavuori, E. (2005). Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology, 11, 732–748.CrossRef
    Paakkonen, E., & Holopainen, T. (1995). Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytologist, 129, 595–603.CrossRef
    Paakkonen, E., Paasisalo, S., Holopainen, T., & Karenlampi, L. (1993). Growth and stomatal responses of birch (Betula pendula Roth.) clones to ozone in open-air and chamber fumigations. New Phytologist, 125, 615–623.CrossRef
    Paakkonen, E., Vahala, J., Holopainen, T., Karjalainen, R., & Karenlampi, L. (1996). Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch (Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology, 16, 597–605.CrossRef
    Paakkonen, E., Holopainen, T., & Karenlampi, L. (1997). Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth.) in relation to ambient levels of ozone in Finland. Environmental Pollution, 96, 117–127.CrossRef
    Paakkonen, E., Vahala, J., Pohjolai, M., Holopainen, T., & Karenlampi, L. (1998a). Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant, Cell and Environment, 21, 671–684.CrossRef
    Paakkonen, E., Gunthardt-Goerg, M. S., & Holopainen, T. (1998b). Responses of leaf processes in a sensitive birch (Betula pendula Roth.) clone to ozone combined with drought. Annals of Botany, 82, 49–59.CrossRef
    Paoletti, E., & Grulke, N. E. (2005). Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environmental Pollution, 137, 483–493.CrossRef
    Pearson, M. (1995). Effects of ozone on growth and gas exchange of Eucalyptus globulus seedlings. Tree Physiology, 15, 207–210.CrossRef
    Penuelas, J., Sardans, J., Estiarte, M., et al. (2013). Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology, 19, 2303–2338.CrossRef
    Petrini, O. (1986). Taxonomy of endophytic fungi of aerial plant tissues. In N. J. Fokkema & J. van den Huevel (Eds.), Microbiology of the phyllosphere (pp. 175–187). Cambridge: Cambridge University Press.
    Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., & Wang, T. (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009–1014.CrossRef
    Riikonen, J., Lindsberg, M. M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., & Vapaavuori, E. (2004). Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiology, 24, 1227–1237.CrossRef
    Saitanis, C. J., Panagopoulos, G., Dasopoulou, V., Agathokleous, E., & Papatheohari, Y. (2015a). Integrated assessment of ambient ozone phytotoxicity in Greece’s Tripolis Plateau. Journal of Agricultural Meteorology, 72, 55–64.
    Saitanis, C. J., Lekkas, D. V., Agathokleous, E., & Flouri, F. (2015b). Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environmental Pollution, 197, 247–255.CrossRef
    Saleem, A., Loponen, J., Pihlaja, K., & Oksanen, E. (2001). Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth.). Journal of Chemical Ecology, 27, 1049–1062.CrossRef
    Samuelson, L. J. (1994a). Ozone-exposure responses of Black cherry and Red maple seedlings. Environmental and Experimental Botany, 34, 355–362.CrossRef
    Samuelson, L. J. (1994b). The role of microclimate in determining the sensitivity of Quercus rubra L. to ozone. New Phytologist, 128, 235–241.CrossRef
    Samuelson, L. J., & Edwards, G. S. (1993). A comparison of sensitivity to ozone in seedlings and trees of Quercus Rubra L. New Phytologist, 125, 373–379.CrossRef
    Samuelson, L. J., & Kelly, J. M. (1996). Carbon partitioning and allocation in northern red oak seedlings and mature trees in response to ozone. Tree Physiology, 16, 853–858.CrossRef
    Sardans, J., & Penuelas, J. (2015). Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 24, 261–275.CrossRef
    Scagel, C. F., & Andersen, C. P. (1997). Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. New Phytologist, 136, 627–643.CrossRef
    Schier, G. A. (1990). Response of yellow poplar (Liriodendron tulipifera L.) seedlings to simulated acid-rain and ozone.2. Effect on throughfall chemistry and nutrients in the leaves. Environmental and Experimental Botany, 30, 325–331.CrossRef
    Seiler, J. R., Tyszko, P. B., & Chevone, B. I. (1994). Effects of long-term ozone fumigations on growth and gas-exchange of Fraser fir seedlings. Environmental Pollution, 85, 265–269.CrossRef
    Shan, Y., Feng, Z., Izuta, T., Aoki, M., & Totsuka, T. (1995). The individual and combined effects of ozone and simulated acid rain on chlorophyll contents, carbon allocation and biomass accumulation of Armand Pine seedlings. Water, Air, and Soil Pollution, 85, 1399–1404.CrossRef
    Shan, Y., Feng, Z., Izuta, T., Aoki, M., & Totsuka, T. (1996). The individual and combined effects of ozone and simulated acid rain on growth, gas exchange rate and water-use efficiency of Pinus armandi Franch. Environmental Pollution, 91(3), 355–361.CrossRef
    Shelburne, V. B., Reardon, J. C., & Paynter, V. A. (1993). The effects of acid rain and ozone on biomass and leaf-area parameters of shortleaf pine (Pinus echinata Mill.). Tree Physiology, 12, 163–172.CrossRef
    Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N., & Paoletti, E. (2013). Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79, 705–715.CrossRef
    Smith, S. E., & Read, D. J. (2008). Mycorrhizal and symbiosis (3rd ed., p. 787). New York, San Diego: Academic Press.
    Sturrock, R. N., Frankel, S. J., Brown, A. V., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149.CrossRef
    Taylor, G. E., Norby, R. J., McLaughlin, S. B., Johnson, A. H., & Turner, R. S. (1986). Carbon dioxide assimilation and growth of red spruce (Picea rubens Sarg.) seedlings in response to ozone, precipitation chemistry, and soil type. Oecologia, 70, 163–171.CrossRef
    Tedersoo, L., Behram, M., Polme, S., et al. (2014). Global diversity and geography of soil fungi. Science, 346, 6213.CrossRef
    Temple, P. J. (1988). Injury and growth of Jeffrey pine and giant sequoia in response to ozone and acidic mist. Environmental and Experimental Botany, 28, 323–334.CrossRef
    Temple, P. J. (1989). Oxidant air pollution effects on plants of Joshua Tree National Monument. Environmental Pollution, 57, 35–47.CrossRef
    Thomas, V. F. D., Braun, S., & Fluckiger, W. (2005). Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies). Environmental Pollution, 137, 507–516.CrossRef
    Thomas, V. F. D., Braun, S., & Fluckiger, W. (2006). Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica). Environmental Pollution, 143, 341–354.CrossRef
    Tiwari, S., & Agrawal, M. (2010). Effectiveness of different EDU concentrations in ameliorating ozone stress in carrot plants. Ecotoxicology and Environmental Safety, 73, 1018–1027.CrossRef
    Tjoelker, M. G., & Luxmoore, R. J. (1991). Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytologist, 119, 69–81.CrossRef
    Tjoelker, M. G., Volin, J. C., Oleksyn, J., & Reich, P. B. (1993). Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh. and hybrid Populus L.1. In-situ net photosynthesis, dark respiration and growth. New Phytologist, 124, 627–636.CrossRef
    Topa, M. A., Vanderklein, D. W., & Corbin, A. (2001). Effects of elevated ozone and low light on diurnal and seasonal carbon gain in sugar maple. Plant, Cell and Environment, 24, 663–677.CrossRef
    Topa, M. A., McDermitt, D. J., Yun, S. C., & King, P. S. (2004). Do elevated ozone and variable light alter carbon transport to roots in sugar maple? New Phytologist, 162, 173–186.CrossRef
    Tseng, E. C., Seiler, J. R., & Chevone, B. I. (1988). Effects of ozone and water stress on greenhouse-grown Fraser fir seedling growth and physiology. Environmental and Experimental Botany, 28, 37–41.CrossRef
    Uren, N. C. (2007). Types, amounts, and possible functions of compounds released into rhizosphere by soil-grown plants. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: biochemistry and organic substances at the soil-plant interface (2nd ed., pp. 1–21). New York: CRC Press.CrossRef
    Utriainen, J., & Holopainen, T. (2000). Impact of increased springtime O3 exposure on Scots pine (Pinus sylvestris) seedlings in central Finland. Environmental Pollution, 109, 479–487.CrossRef
    Utriainen, J., & Holopainen, T. (2001a). Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings. Tree Physiology, 21, 447–456.CrossRef
    Utriainen, J., & Holopainen, T. (2001b). Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree Physiology, 21, 1205–1213.CrossRef
    Utriainen, J., & Holopainen, T. (2002). Responses of Pinus sylvestris and Picea abies seedlings to limited phosphorus fertilization and treatment with elevated ozone concentrations. Scandinavian Journal of Forest Research, 17, 501–510.CrossRef
    Utriainen, J., Janhunen, S., Helmisaari, H. S., & Holopainen, T. (2000). Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO2 and O3 concentrations. Trees, 14, 475–484.CrossRef
    Valentini, R., et al. (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861–865.CrossRef
    Valkama, E., Koricheva, J., & Oksanen, E. (2007). Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biology, 13, 184–201.CrossRef
    Van den Driessche, R., & Langebartels, C. (1994). Foliar symptoms, ethylene biosynthesis and water use of young Norway spruce (Picea abies (L.) Karst.) exposed to drought and ozone. Water, Air, and Soil Pollution, 78, 153–168.CrossRef
    Vanhatalo, M., Back, J., & Huttunen, S. (2003). Differential impacts of long-term (CO2) and O3 exposure on growth of northern conifer and deciduous tree species. Trees, 17, 211–220.
    Vaultier, M.-N., & Jolivet, Y. (2015). Ozone sensing and early signaling in plants: an outline from the cloud. Environmental and Experimental Botany, 114, 144–152.CrossRef
    Volin, J. C., & Reich, P. B. (1996). Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiologia Plantarum, 97, 674–684.CrossRef
    Wang, X., Agathokleous, E., Qu, L., Watanabe, M., & Koike, T. (2015a). Effects of CO2 and/or O3 on the interaction between root of woody plants and ectomycorrhizae. Journal of Agricultural Meteorology, (in press).
    Wang, X., Qu, L., Mao, Q., Watanabe, M., Hoshika, Y., Koyama, A., Kawaguchi, K., Tamai, Y., & Koike, T. (2015b). Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3. Environmental Pollution, 197, 116–126.CrossRef
    Watanabe, M., Yamaguchi, M., Tabe, C., Iwasaki, M., Yamashita, R., Funada, R., Fukami, M., Matsumura, H., Kohno, Y., & Izuta, T. (2007). Influences of nitrogen load on the growth and photosynthetic responses of Quercus serrata seedlings to O3. Trees, 21, 421–432.CrossRef
    Watanabe, M., Yamaguchi, M. U., Koike, T., & Izuta, T. (2010). Growth and photosynthetic response of Fagus crenata seedlings to ozone and/or elevated carbon dioxide. Landscape and Ecological Engineering, 6, 181–190.CrossRef
    Weinstein, D. A., Samuelson, L. J., & Arthur, M. A. (1998). Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling. Environmental Pollution, 102, 307–320.CrossRef
    White, P. J. (2012). Ion uptake mechanisms of individual cells and roots: short-distance transport. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 7–47). Oxford: Elsevier.CrossRef
    Winkler, J. B., Fleischmann, F., Gayler, S., Scherb, H., Matyssek, R., & Grams, T. E. E. (2009). Do chronic aboveground O3 exposure and belowground pathogen stress affect growth and belowground biomass partitioning of juvenile beech trees (Fagus sylvatica L.)? Plant and Soil, 323, 31–44.CrossRef
    Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15, 396–424.CrossRef
    Yamaguchi, M., Watanabe, M., Iwasaki, M., Tabe, C., Matsumura, H., Kohno, Y., & Izuta, T. (2007a). Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees, 21, 707–718.CrossRef
    Yamaguchi, M., Watanabe, M., Matsuo, N., Naba, J., Funada, R., Fukami, M., Matsumura, H., Kohno, Y., & Izuta, T. (2007b). Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of Japanese beech (Fagus crenata) seedlings. Water, Air, & Soil Pollution: Focus, 7, 131–136.CrossRef
    Yamaguchi, M., Watanabe, M., Matsumura, H., Kohno, Y., & Izuta, T. (2011). Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian Journal of Atmospheric Environment, 5–2, 65–78.CrossRef
    Yamaji, K., Julkunen-Tiitto, R., Rousi, M., Freiwald, V., & Oksanen, E. (2003). Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth.). Global Change Biology, 9, 1363–1377.CrossRef
    Yamaji, K., Ohara, T., Uno, I., Kurokawa, J., Pochanart, P., & Akimoto, H. (2008). Future prediction of surface ozone over east Asia using models-3 community multiscale air quality modeling system and regional emission inventory in Asia. Journal of Geophysical Research, 113, D08306.CrossRef
    Yonekura, T., Dokiya, Y., Fukami, M., & Izuta, T. (2001). Effects of ozone and/or soil water stress on growth and photosynthesis of Fagus crenata seedlings. Water, Air, and Soil Pollution, 130, 965–970.CrossRef
    Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Penuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs, 85, 133–155.CrossRef
    Zhang, W., Feng, Z., Wang, X., & Niu, J. (2012). Responses of native broadleaved woody species to elevated ozone in subtropical China. Environmental Pollution, 163, 149–157.CrossRef
  • 作者单位:Eugenios Agathokleous (1)
    Costas J. Saitanis (2)
    Xiaona Wang (3)
    Makoto Watanabe (4)
    Takayoshi Koike (1)

    1. Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
    2. Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
    3. Agricultural University of Hebei Province, Baoding, 071000, China
    4. Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Woody plants constitute a great sink of carbon storage, mitigating thus the greenhouse effect phenomenon. They are considered key players in ecosystems, and among others, they help in decreasing soil erosion and in maintaining soil moisture. Over the last decades, researches have shown negative effects of the ambient ozone (O3) on many woody species, not only on canopy but also on belowground part of trees. Negative effects of elevated O3 (eO3), which usually refers to any O3 dosages above the current ambient levels, on belowground structure, function, and processes may have consequences to ecosystem sustainability. We reviewed reports of research published over the past 40 years and dealing with woodies belowground response to eO3. eO3 induces changes in C dynamics into plants and alterations in their metabolism accordingly, as a result of different strategies followed by the trees in order to compensate with eO3 stress effects. In these strategies, phenolics seem to have a detrimental role in shoot/root allometry. Root and soil chemical composition can be also influenced, threatening thus the soil biodiversity, soil fertility, and nutrient cycling. Elevated O3 impact is discussed with linkage to other potential ecological consequences.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700