Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms
详细信息    查看全文
  • 作者:Elishai Ezra ; Idan Maor ; Danny Bavli ; Itai Shalom ; Gahl Levy…
  • 关键词:Microfluidics ; Microprocessor ; Optimization ; Gadgeteer
  • 刊名:Biomedical Microdevices
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:17
  • 期:4
  • 全文大小:4,106 KB
  • 参考文献:S. Ahrar, M. Hwang, P.N. Duncan, E.E. Hui, Analyst 139(1), 187–190 (2014)CrossRef
    I.E. Araci, P. Brisk, Curr. Opin. Biotechnol. 25, 60–68 (2014)CrossRef
    K.C. Bhargava, B. Thompson, N. Malmstadt, Proc. Natl. Acad. Sci. U. S. A. 111(42), 15013–15018 (2014)CrossRef
    A.O. El Moctar, N. Aubry, J. Batton, Lab Chip 3(4), 273–280 (2003)CrossRef
    R. Fobel, C. Fobel, A.R. Wheeler. Appl. Phys. Lett. 102(19) (2013)
    E.P. Kartalov, J.F. Zhong, A. Scherer, S.R. Quake, C.R. Taylor, W.F. Anderson, Biotechniques 40(1), 85–90 (2006)CrossRef
    S. Kirkpatrick, J. Stat. Phys. 34(5–6), 975–986 (1984)MathSciNet CrossRef
    J.E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis, R.F. Ismagilov, J. Am. Chem. Soc. 132(9), 3128–3132 (2010)CrossRef
    C.Y. Lee, C.L. Chang, Y.N. Wang, L.M. Fu, Int. J. Mol. Sci. 12(5), 3263–3287 (2011)CrossRef
    J. Melin, S.R. Quake, Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRef
    P. Neuzil, C.D. Campos, C.C. Wong, J.B. Soon, J. Reboud, A. Manz, Lab Chip 14(13), 2168–2176 (2014)CrossRef
    G. Pascali, L. Matesic, T.L. Collier, N. Wyatt, B.H. Fraser, T.Q. Pham et al., Nat. Protoc. 9(9), 2017–2029 (2014)CrossRef
    J.M. Pearce, Science 337(6100), 1303–1304 (2012)CrossRef
    S. Prill, M.S. Jaeger, C. Duschl, Biomicrofluidics 8(3) (2014)
    V. Sanchez-Freire, A.D. Ebert, T. Kalisky, S.R. Quake, J.C. Wu, Nat. Protoc. 7(5), 829–838 (2012)CrossRef
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75(1), 016601 (2012)CrossRef
    C. Tovey, SIAM. J. on Algebraic and Discrete Methods 6(3), 384–393 (1985)
    H.Y. Tseng, C.H. Wang, W.Y. Lin, G.B. Lee, Biomed. Microdevices 9(4), 545–554 (2007)CrossRef
    P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik, ACS Nano 7(12), 10671–10680 (2013)CrossRef
    B.L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D.A. Weitz, G.R. Fink et al., Nat. Biotechnol. 32(5), 473–478 (2014)CrossRef
    W.B. Zimmerman, Chem. Eng. Sci. 66(7), 1412–1425 (2011)CrossRef
  • 作者单位:Elishai Ezra (1)
    Idan Maor (1)
    Danny Bavli (1)
    Itai Shalom (1)
    Gahl Levy (1)
    Sebastian Prill (2)
    Magnus S. Jaeger (2)
    Yaakov Nahmias (1) (3)

    1. Grass Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
    2. Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology, Potsdam, 04103, Germany
    3. Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Biophysics and Biomedical Physics
    Nanotechnology
    Engineering Fluid Dynamics
  • 出版者:Springer Netherlands
  • ISSN:1572-8781
文摘
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700