Attenuated transforming growth factor beta signaling promotes metastasis in a model of HER2 mammary carcinogenesis
详细信息    查看全文
  • 作者:Sergey V Novitskiy ; Elizabeth Forrester ; Michael W Pickup…
  • 刊名:Breast Cancer Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:16
  • 期:5
  • 全文大小:2,402 KB
  • 参考文献:1. Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. / Nat Rev Cancer 2006, 6:506-20. CrossRef
    2. Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD Jr, Page DL: Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasive carcinomas. / Histopathology 2000, 36:168-77. CrossRef
    3. Bottinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, Merlino G, Wakefield LM: Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. / EMBO J 1997, 16:2621-633. CrossRef
    4. Wang XJ, Greenhalgh DA, Bickenbach JR, Jiang A, Bundman DS, Krieg T, Derynck R, Roop DR: Expression of a dominant-negative type II transforming growth factor beta (TGF-beta) receptor in the epidermis of transgenic mice blocks TGF-beta-mediated growth inhibition. / Proc Natl Acad Sci USA 1997, 94:2386-391. CrossRef
    5. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL: Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. / Cancer Res 2005, 65:2296-302. CrossRef
    6. Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. / Cancer Res 2008, 68:1809-819. CrossRef
    7. Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL: Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. / J Clin Invest 2009, 119:1571-582. CrossRef
    8. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1-?CD11b-?myeloid cells that promote metastasis. / Cancer Cell 2008, 13:23-5. CrossRef
    9. Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M, Wu H, Shyr Y, Moses HL: TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. / Cancer Discov 2011, 1:430-41. CrossRef
    10. Matise LA, Palmer TD, Ashby WJ, Nashabi A, Chytil A, Aakre M, Pickup MW, Gorska AE, Zijlstra A, Moses HL: Lack of transforming growth factor-beta signaling promotes collective cancer cell invasion through tumor-stromal crosstalk. / Breast Cancer Res 2012, 14:R98. CrossRef
    11. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. / Proc Natl Acad Sci USA 1992, 89:10578-0582. CrossRef
    12. Siegel PM, Ryan ED, Cardiff RD, Muller WJ: Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. / EMBO J 1999, 18:2149-164. CrossRef
    13. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. / Cell 1988, 54:105-15. CrossRef
    14. Hynes NE, Stern DF: The biology of erbB-2/neu/HER-2 and its role in cancer. / Biochim Biophys Acta 1994, 1198:165-84.
    15. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, Zent R, Arteaga CL: Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. / Oncogene 2006, 25:3408-423. CrossRef
    16. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J: Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. / Proc Natl Acad Sci USA 2003, 100:8430-435. CrossRef
    17. Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, Moses HL, Arteaga CL: Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. / Mol Cell Biol 2003, 23:8691-703. CrossRef
    18. Bandyopadhyay A, Lopez-Casillas F, Malik SN, Montiel JL, Mendoza V, Yang J, Sun LZ: Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. / Cancer Res 2002, 62:4690-695.
    19. Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL: Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. / Am J Pathol 2003, 163:1539-549. CrossRef
    20. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr-?CD11b-?cells in tumor-bearing host directly promotes tumor angiogenesis. / Cancer Cell 2004, 6:409-21. CrossRef
    21. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM: Adenosine receptors in regulation of dendritic cell differentiation and function. / Blood 2008, 112:1822-831. CrossRef
    22. Ljung BM, Mayall B, Lottich C, Boyer C, Sylvester SS, Leight GS, Siegler HF, Smith HS: Cell dissociation techniques in human breast cancer–variations in tumor cell viability and DNA ploidy. / Breast Cancer Res Treat 1989, 13:153-59. CrossRef
    23. Jessen KA, Liu SY, Tepper CG, Karrim J, McGoldrick ET, Rosner A, Munn RJ, Young LJ, Borowsky AD, Cardiff RD, Gregg JP: Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin. / Breast Cancer Res 2004, 6:R157–R169. CrossRef
    24. Nesbitt SA, Horton MA: A nonradioactive biochemical characterization of membrane proteins using enhanced chemiluminescence. / Anal Biochem 1992, 206:267-72. CrossRef
    25. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS: Supervised risk predictor of breast cancer based on intrinsic subtypes. / J Clin Oncol 2009, 27:1160-167. CrossRef
    26. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, Kelley M, Mathey-Prevot B, Potti A, Nevins JR: A pathway-based classification of human breast cancer. / Proc Natl Acad Sci USA 2010, 107:6994-999. CrossRef
    27. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, L?nning PE, Brown PO, B?rresen-Dale AL, Botstein D: Repeated observation of breast tumor subtypes in independent gene expression data sets. / Proc Natl Acad Sci USA 2003, 100:8418-423. CrossRef
    28. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. / Breast Cancer Res Treat 2010, 123:725-31 [http://www.kmplot.com] CrossRef
    29. The language and environment for statistical computing and graphics. [http://www.r-project.org]
    30. Gorska AE, Joseph H, Derynck R, Moses HL, Serra R: Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. / Cell Growth Differ 1998, 9:229-38.
    31. Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z, Moran MF, Oshima RG, Cardiff RD, Muller WJ: Grb2 and Shc adapter proteins play distinct roles in Neu (ErbB-2)-induced mammary tumorigenesis: implications for human breast cancer. / Mol Cell Biol 2001, 21:1540-551. CrossRef
    32. Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, Carbone DP: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. / Blood 2007, 110:624-31. CrossRef
    33. Chow A, Arteaga CL, Wang SE: When tumor suppressor TGFbeta meets the HER2 (ERBB2) oncogene. / J Mammary Gland Biol Neoplasia 2011, 16:81-8. CrossRef
    34. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, Ma CX, Ding L, Mardis ER, Ellis MJ: Activating HER2 mutations in HER2 gene amplification negative breast cancer. / Cancer Discov 2013, 3:224-37. CrossRef
    35. Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P: Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. / PLoS Biol 2010, 8:e1000562. CrossRef
    36. O'Keeffe MB, Devlin AH, Burns AJ, Gardiner TA, Logan ID, Hirst DG, McKeown SR: Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. / Oncol Res 2008, 17:93-01.
    37. Stefansson IM, Salvesen HB, Akslen LA: Vascular proliferation is important for clinical progress of endometrial cancer. / Cancer Res 2006, 66:3303-309. CrossRef
    38. Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H: Pericytes limit tumor cell metastasis. / J Clin Invest 2006, 116:642-51. CrossRef
    39. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, Asaoka Y, Maeda S, Ikenoue T, Tateishi K, Wright CV, Koike K, Omata M, Moses HL: Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. / J Clin Invest 2011, 121:4106-117. CrossRef
    40. Fang WB, Jokar I, Chytil A, Moses HL, Abel T, Cheng N: Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression. / Clin Exp Metastasis 2011, 28:351-66. CrossRef
    41. Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL: Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. / J Biol Chem 2001, 276:46707-6713. CrossRef
    42. Wu DT, Bitzer M, Ju W, Mundel P, Bottinger EP: TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. / J Am Soc Nephrol 2005, 16:3211-221. CrossRef
    43. Kale VP, Vaidya AA: Molecular mechanisms behind the dose-dependent differential activation of MAPK pathways induced by transforming growth factor-beta1 in hematopoietic cells. / Stem Cells Dev 2004, 13:536-47. CrossRef
    44. Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. / Nat Rev Immunol 2009, 9:162-74. CrossRef
    45. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI: Lipid accumulation and dendritic cell dysfunction in cancer. / Nat Med 2010, 16:880-86. CrossRef
  • 作者单位:Sergey V Novitskiy (1)
    Elizabeth Forrester (1)
    Michael W Pickup (1)
    Agnieszka E Gorska (1)
    Anna Chytil (1)
    Mary Aakre (1)
    Dina Polosukhina (2)
    Philip Owens (1)
    Dilyara R Yusupova (3)
    Zhiguo Zhao (4)
    Fei Ye (4)
    Yu Shyr (4)
    Harold L Moses (1) (5)

    1. Cancer Biology Department, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
    2. Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
    3. Department of Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
    4. Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
    5. Vanderbilt University, 2220 Pierce Ave, PRB 612, Nashville, TN, 37232, USA
  • ISSN:1465-5411
文摘
Introduction Transforming growth factor beta (TGFβ) plays a major role in the regulation of tumor initiation, progression, and metastasis. It is depended on the type II TGFβ receptor (TβRII) for signaling. Previously, we have shown that deletion of TβRII in mammary epithelial of MMTV-PyMT mice results in shortened tumor latency and increased lung metastases. However, active TGFβ signaling increased the number of circulating tumor cells and metastases in MMTV-Neu mice. In the current study, we describe a newly discovered connection between attenuated TGFβ signaling and human epidermal growth factor receptor 2 (HER2) signaling in mammary tumor progression. Methods All studies were performed on MMTV-Neu mice with and without dominant-negative TβRII (DNIIR) in mammary epithelium. Mammary tumors were analyzed by flow cytometry, immunohistochemistry, and immunofluorescence staining. The levels of secreted proteins were measured by enzyme-linked immunosorbent assay. Whole-lung mount staining was used to quantitate lung metastasis. The Cancer Genome Atlas (TCGA) datasets were used to determine the relevance of our findings to human breast cancer. Results Attenuated TGFβ signaling led to a delay tumor onset, but increased the number of metastases in MMTVNeu/DNIIR mice. The DNIIR tumors were characterized by increased vasculogenesis, vessel leakage, and increased expression of vascular endothelial growth factor (VEGF). During DNIIR tumor progression, both the levels of CXCL1/5 and the number of CD11b+Gr1+ cells and T cells decreased. Analysis of TCGA datasets demonstrated a significant negative correlation between TGFBR2 and VEGF genes expression. Higher VEGFA expression correlated with shorter distant metastasis-free survival only in HER2+ patients with no differences in HER2-, estrogen receptor +/- or progesterone receptor +/- breast cancer patients. Conclusion Our studies provide insights into a novel mechanism by which epithelial TGFβ signaling modulates the tumor microenvironment, and by which it is involved in lung metastasis in HER2+ breast cancer patients. The effects of pharmacological targeting of the TGFβ pathway in vivo during tumor progression remain controversial. The targeting of TGFβ signaling should be a viable option, but because VEGF has a protumorigenic effect on HER2+ tumors, the targeting of this protein could be considered when it is associated with attenuated TGFβ signaling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700