The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications
详细信息    查看全文
  • 作者:Luciano Procópio (1) (2)
    Andrew Macrae (3)
    Jan Dirk van Elsas (2)
    Lucy Seldin (1)
  • 关键词:Dietzia cinnamea P4 ; Sequence analysis ; α/β ; Hydrolase fold ; Epoxide hydrolases
  • 刊名:Antonie van Leeuwenhoek
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:103
  • 期:3
  • 页码:635-646
  • 全文大小:553KB
  • 参考文献:1. Ahmed EH, Raghavendra T, Madamwar D (2010) A thermostable alkaline lipase from a local isolate / Bacillus subtilis EH 37: characterization, partial purification, and application in organic synthesis. Appl Biochem Biotechnol 160(7):2102-113 CrossRef
    2. Arand M, Hallberg BM, Zou J, Bergfors T, Oesch F, van der Werf MJ, de Bont JA, Jones TA, Mowbray SL (2003) Structure of / Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J 22(11):2583-592 CrossRef
    3. Archelas A, Furstoss R (2001) Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol 5(2):112-19 CrossRef
    4. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(1):177-83 CrossRef
    5. Brumlik MJ, Buckley JT (1996) Identification of the catalytic triad of the lipase/acyltransferase from / Aeromonas hydrophila. J Bacteriol 178(7):2060-064
    6. Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361(5):1003-034 CrossRef
    7. Carvalho CM, Aires-Barros MR, Cabral JM (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66(1):17-4 CrossRef
    8. Cuff AL, Sillitoe I, Lewis T, Clegg AB, Rentzsch R, Furnham N, Pellegrini-Calace M, Jones D, Thornton J, Orengo CA (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucl Acids Res 39:D420–D426 CrossRef
    9. Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83(4):297-18 CrossRef
    10. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673-79 CrossRef
    11. Fischer M, Pleiss J (2003) The lipase engineering database: a navigation and analysis tool for protein families. Nucl Acids Res 31(1):319-21 CrossRef
    12. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by / Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600 CrossRef
    13. Holmquist M (2000) Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1(2):209-35 CrossRef
    14. Hotelier T, Renault L, Cousin X, Negre V, Marchot P, Chatonnet A (2004) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins. Nucl Acids Res 32:D145–D147 CrossRef
    15. Kang HY, Kim JF, Kim MH, Park SH, Oh TK, Hur CG (2006) MELDB: a database for microbial esterases and lipases. FEBS Lett 580(11):2736-740 CrossRef
    16. Kitagawa W, Miyauchi K, Masai E, Fukuda M (2001) Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader / Rhodococcus sp. strain RHA1. J Bacteriol 183(22):6598-606 CrossRef
    17. Lazniewski M, Steczkiewicz K, Knizewski L, Wawer I, Ginalski K (2011) Novel transmembrane lipases of alpha/beta hydrolase fold. FEBS Lett 585(6):870-74 CrossRef
    18. Meijer J, DePierre JW (1988) Cytosolic epoxide hydrolase. Chem Biol Interact 64(3):207-49 CrossRef
    19. Mitra K, Shin JA, Lee JH, Kim SA, Hong ST, Sung CK, Xue CL, Lee KT (2012) Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants. J Food Sci 1:C39–C45 CrossRef
    20. Miyazaki K, Fujikawa S (1999) Methods of treating skin disease, scalp disease, sensitive skin or suppressing hair loss with microbubble washing compositions. US patent number 200090214512
    21. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9(6):732-37 CrossRef
    22. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotech Appl Biochem 29:119-31
    23. Procópio L, Alvarez VM, Jurelevicius DA, Hansen L, S?rensen SJ, Cardoso JS, Pádula M, Leit?o AC, Seldin L, van Elsas JD (2012) Insight from the draft genome of / Dietzia / cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential. Antonie Van Leeuwenhoek 101(2):289-02 CrossRef
    24. Qian Z, Fields CJ, Yu Y, Lutz S (2007) Recent progress in engineering alpha/beta hydrolase-fold family members. Biotechnol J 2(2):192-00 CrossRef
    25. Raita MV, Champreda V, Laosiripojana N (2010) Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in / tert-butanol system. Process Biochem 45:829-34 CrossRef
    26. Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucl Acids Res 40:D343–D350 CrossRef
    27. Sangeetha R, Arulpandi I, Geetha A (2011) Bacterial lipases as potential industrial biocatalysts: an overview. Res J Microbiol 6:1-4 CrossRef
    28. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21(4):257-76 CrossRef
    29. Singh NK, Goodman A, Walter P, Helms V, Hayat S (2011) TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues. Biochim Biophys Acta 1814(5):664-70 CrossRef
    30. Soror SH, Rao R, Cullum J (2009) Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of / Streptomyces coelicolor A3 (2). Protein Eng Des Sel 22(6):333-39 CrossRef
    31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596-599 CrossRef
    32. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinf 2:2-
    33. van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB (2006) Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol 72(4):2905-917 CrossRef
    34. Wang X, Yu X, Xu Y (2009) Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from / Burkholderia cepacia ATCC 25416. Enzym Microb Technol 45:94-02 CrossRef
  • 作者单位:Luciano Procópio (1) (2)
    Andrew Macrae (3)
    Jan Dirk van Elsas (2)
    Lucy Seldin (1)

    1. Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fund?o, Rio de Janeiro, RJ, CEP 21941.590, Brazil
    2. CEES, Department of Microbial Ecology, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
    3. Laboratório de Biotecnologia Sustentável e Bioinformática Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fund?o, Rio de Janeiro, RJ, CEP 21941.590, Brazil
  • ISSN:1572-9699
文摘
The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/β-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/β-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C–C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6?Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700