Exotic cheatgrass and loss of soil biota decrease the performance of a native grass
详细信息    查看全文
  • 作者:Suzanne M. Owen (1)
    Carolyn Hull Sieg (1)
    Nancy Collins Johnson (2) (3)
    Catherine A. Gehring (3)
  • 关键词:Arbuscular mycorrhizal fungi ; Bromus tectorum ; Elymus elymoides ; Invasion ; Phosphorus ; Pinyon ; Juniper woodlands
  • 刊名:Biological Invasions
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:15
  • 期:11
  • 页码:2503-2517
  • 全文大小:516KB
  • 参考文献:1. Barto EK, Antunes PM, Stinson K, Koch AM, Klironomos JN, Cipollini D (2011) Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biol Invasions 13:2755鈥?762 CrossRef
    2. Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass ( / Bromus tectorum) invasion. Ecol Appl 11:1261鈥?275 CrossRef
    3. Belnap J, Sherrod S (2009) Soil amendment effects on the exotic annual grass / Bromus tectorum L. and facilitation of its growth by the native perennial grass / Hilaria jamesii (Torr.) Benth. Plant Ecol 201:709鈥?21 CrossRef
    4. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. TREE 25:468鈥?78
    5. Bradford JB, Lauenroth WK (2006) Controls over invasion of / Bromus tectorum: the importance of climate, soil, disturbance and seed availability. J Veg Sci 17:693鈥?04
    6. Brooks M, D鈥橝ntonio C, Richardson D, Grace J, Keeley J, DiTomaso J, Hobbs R, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677鈥?88 CrossRef
    7. Callaway RM, Cipollini D, Barto K, Thelen GC, Hallet SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043鈥?055 CrossRef
    8. Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133鈥?41 CrossRef
    9. Carvalho LM, Antunes PM, Martins-Lou莽茫o MA, Klironomos JN (2010) Disturbance influences the outcome of plant鈥搒oil biota interactions in the invasive Acacia longifolia and in native species. Oikos 119:1172鈥?180 CrossRef
    10. Chambers JC, Roundy BA, Blank RR, Meyers SE, Whittaker A (2007) What makes Great Basin sagebrush ecosystems invasible by / Bromus tectorum? Ecol Monogr 77:117鈥?45 CrossRef
    11. Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479鈥?97 CrossRef
    12. Condon L, Weisburg PJ, Chambers JC (2011) Abiotic and biotic influences on / Bromus tectorum invasion and / Artemisia tridentata recovery after fire. Int J Wildland Fire 20:597鈥?04 CrossRef
    13. D鈥橝ntonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle and global change. Annu Rev Ecol and Syst 23:63鈥?7
    14. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasability. J Ecol 88:528鈥?34 CrossRef
    15. Dodge RA, Ful茅 PZ, Sieg CH (2008) Dalmatian toadflax ( / Linaria dalmatica) response to wildfire in a southwestern USA forest. Ecoscience 15:213鈥?22 CrossRef
    16. Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667鈥?79 CrossRef
    17. Duncan CA, Jachetta JJ, Brown ML et al (2004) Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technol 18:1411鈥?416 CrossRef
    18. Eschtruth A, Battles J (2009) Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79:265鈥?80 CrossRef
    19. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301鈥?310 CrossRef
    20. Harner MJ, Mummey DL, Stanford JA, Rillig MC (2010) Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequence. Biol Invasions 12:1481鈥?490 CrossRef
    21. Haskins KE, Gehring CA (2004) Long-term effects of burning slash on plant communities and arbuscular mycorrhizae in a semi-arid woodland. J Appl Ecol 41:379鈥?88 CrossRef
    22. Hawkes CV, Belnap J, D鈥橝ntonio C, Firestone MK (2006) Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281:369鈥?80 CrossRef
    23. Hernandez RR, Sandquist DR (2011) Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecol 212:1709鈥?721 CrossRef
    24. Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355鈥?62 CrossRef
    25. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394鈥?07 CrossRef
    26. Humphrey L, Schupp E (2004) Competition as a barrier to establishment of a native perennial grass ( / Elymus elymoides) in alien annual grass ( / Bromus tectorum) communities. J Arid Environ 58:405鈥?22 CrossRef
    27. Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749鈥?57 CrossRef
    28. Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon Z, Whitbeck J (eds) The rhizosphere: an ecological perspective. Academic Press, New York, pp 73鈥?00
    29. Johnson NC, Graham JH, Smith AF (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phyt 135:575鈥?85 CrossRef
    30. Klemmedson JO, Smith JG (1964) Cheatgrass ( / Bromus tectorum L.C.). Bot Rev 30:226鈥?62 CrossRef
    31. Klironomos JN (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, and Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the eighth international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp 845鈥?51
    32. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67鈥?0 CrossRef
    33. Korb JE, Johnson NC, Covington WW (2003) Arbuscular mycorrhizal densities respond rapidly to ponderosa pine restoration treatments. J Appl Ecol 40:101鈥?10 CrossRef
    34. Korb JE, Johnson NC, Covington WW (2004) Slash pile burning effects on soil biotic and chemical properties and plant establishment: recommendations for amelioration. Rest Ecol 12:52鈥?2 CrossRef
    35. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980鈥?92 CrossRef
    36. Lachat Instruments, Inc (1998) QuikChem method no. 13-115-01-1-B. Milwaukee, Wisconsin
    37. Lankau R (2010) Soil microbial communities alter allelopathic competition between / Alliaria petiolata and a native species. Biol Invasions 12:2059鈥?068 CrossRef
    38. Leger EA (2008) the adaptive value of remnant native plants in invaded communities: an example from the Great Basin. Ecol Appl 18:1226鈥?235 CrossRef
    39. Lett CN, DeWald LE, Horton J (2011) Mycorrhizae and soil phosphorus affect growth of / Celastrus orbiculatus. Biol Invasions 13:2339鈥?350 CrossRef
    40. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689鈥?11 CrossRef
    41. Mazzola MB, Chambers JC, Blank RR, Pyke DA, Schupp EW, Allcock KG, Doescher PS, Nowak RS (2011) Effects of resource availability and propagule supply on native species recruitment in sagebrush ecosystems invaded by / Bromus tectorum. Biol Invasions 13:513鈥?26 CrossRef
    42. McGlone CM, Sieg CH, Kolb TE (2011) Invasion resistance and persistence: established plants win, even with disturbance and high propagule pressure. Biol Invasions 13:291鈥?04 CrossRef
    43. McGlone CM, Sieg CH, Kolb TE, Nietupsky T (2012) Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability. Plant Ecol 213:445鈥?57 CrossRef
    44. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular鈥揳rbuscular mycorrhizal fungi. New Phytol 115:495鈥?01 CrossRef
    45. Meinhardt KA, Gehring CA (2012) Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecol Appl 22:532鈥?49 CrossRef
    46. Miller M, Belnap J, Beatty S, Reynolds R (2006) Performance of / Bromus tectorum L. in relation to soil properties, water additions, and chemical amendments in calcareous soils of southeastern Utah, USA. Plant Soil 288:1鈥?8 CrossRef
    47. Moles AT, Flores-Moreno H, Bonser SP et al (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116鈥?27 CrossRef
    48. Monaco TA, Johnson DA, Norton JM, Jones TA, Connors KJ, Norton JB, Redinbaugh MB (2003) Contrasting responses of intermountain west grasses to soil nitrogen. J Range Manag 56:282鈥?90 CrossRef
    49. Mummey DL, Rillig MC (2006) The invasive plant species / Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81鈥?0 CrossRef
    50. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783鈥?93 CrossRef
    51. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407鈥?11 CrossRef
    52. Owen SM, Sieg CH, Gehring CA, Bowker MA (2009) Above- and belowground responses to tree thinning depend on the treatment of tree debris. For Ecol Manag 259:71鈥?0 CrossRef
    53. Perkins LB, Nowak RS (2013) Native and non-native grasses generate common types of plant鈥搒oil feedbacks by altering soil nutrients and microbial communities. Oikos 122:199鈥?08 CrossRef
    54. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699鈥?15 CrossRef
    55. Ramsey DK (2003) Soil survey of cortez area, colorado, parts of Dolores and Montezuma Counties. USDA, National Resources Conservation Service, p 628
    56. Ray-Mukherjee J, Jones TA, Adler PB, Monaco TA (2011) Immature seedling growth of two north American native perennial bunchgrasses and the invasive grass / Bromus tectorum. Rangel Ecol Manag 64:358鈥?65 CrossRef
    57. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445鈥?57 CrossRef
    58. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six montane species and / Bromus tectorum. Rest Ecol 15:44鈥?2 CrossRef
    59. Rowe HI, Brown CS, Paschke MW (2009) The influence of soil inoculum and nitrogen availability on restoration of high-elevation steppe communities invaded by / Bromus tectorum. Rest Ecol 17:686鈥?94 CrossRef
    60. SAS Institute, Inc (2010) JMP version 9.0.2, statistical analysis software. SAS Institute, Inc., Cary
    61. Schnoor TK, Lekberg Y, Rosendahl S, Axel Olsson P (2011) Mechanical soil disturbance as a detriment of arbuscular mycorrhizal fungal communities in a semi-natural grassland. Mycorrhiza 21:211鈥?20 CrossRef
    62. Sharma SK, Ramesh A, Sharma MP, Joshi OP, Govaerts B, Steenwerth KL, Karlen DL (2011) Microbial community structure and diversity as indicators for evaluating soil quality. Biodiv Biofuel Agrofor Conserv Agric 5:317鈥?58 CrossRef
    63. Sieg CH, Phillips BG, Moser LP (2003) Exotic invasive plants. In: Friederici P (ed) Ecological restoration of southwestern ponderosa pine forests. Island Press, Washington, DC, pp 251鈥?67
    64. Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3:12鈥?0 CrossRef
    65. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego
    66. Stampe ED, Daehler CC (2003) Mycorrhizal species identity affects plant community structure and invasion: a microcosm study. Oikos 100:362鈥?72 CrossRef
    67. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727鈥?31 CrossRef
    68. Thomsen M, D鈥橝ntonio C, Suttle K, Sousa W (2006) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160鈥?70 CrossRef
    69. van de Voorde TFJ, van der Putten WH, Bezemer TM (2012) Soil inoculation method determines the strength of plant-soil interactions. Soil Biol Biochem 55:1鈥? CrossRef
    70. Veiga RSL, Jansa J, Frossard E, van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6(12):e27825. doi:10.1371/journal.pone.0027825 CrossRef
    71. Vierheilig H, Coughlan AP, Wyss U, Pich茅 Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbio 64:5004鈥?007
    72. Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399鈥?07 CrossRef
    73. Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803鈥?13 CrossRef
    74. Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732鈥?738 CrossRef
    75. Wolfson BAS, Kolb TE, Sieg CH, Clancy KM (2005) Effects of post-fire conditions on germination and seedling success of diffuse knapweed in northern Arizona. For Ecol Manage 216:342鈥?58 CrossRef
    76. Yoshida LC, Allen EB (2001) Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. Am J Bot 88:1430鈥?436 CrossRef
    77. Young JA, Evans RA (1978) Population dynamics after wildfires in sagebrush grasslands. J Range Manag 31:283鈥?89 CrossRef
    78. Zhang J, Zhang C (2012) Sampling and sampling strategies for environmental analysis. Intern J Environ Anal Chem 92:466鈥?78 CrossRef
  • 作者单位:Suzanne M. Owen (1)
    Carolyn Hull Sieg (1)
    Nancy Collins Johnson (2) (3)
    Catherine A. Gehring (3)

    1. USDA Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Drive, Flagstaff, AZ, 86001, USA
    2. School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
    3. Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
  • ISSN:1573-1464
文摘
Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the native perennial grass, squirreltail (Elymus elymoides). Using a greenhouse experiment, we compared the responses of conspecific and heterospecific pairs of cheatgrass and squirreltail inoculated with soil (including live AM spores and other organisms) collected from fuel treatments with high, intermediate and no disturbance (pile burns, mastication, and intact woodlands) and a sterile control. Cheatgrass growth was unaffected by type of soil inoculum, whereas squirreltail growth, reproduction and nutrient uptake were higher in plants inoculated with soil from mastication and undisturbed treatments compared to pile burns and sterile controls. Squirreltail shoot biomass was positively correlated with AM colonization when inoculated with mastication and undisturbed soils, but not when inoculated with pile burn soils. In contrast, cheatgrass shoot biomass was negatively correlated with AM colonization, but this effect was less pronounced with pile burn inoculum. Cheatgrass had higher foliar N and P when grown with squirreltail compared to a conspecific, while squirreltail had lower foliar P, AM colonization and flower production when grown with cheatgrass. These results indicate that changes in AM communities resulting from high disturbance may favor exotic plant species that do not depend on mycorrhizal fungi, over native species that depend on particular taxa of AM fungi for growth and reproduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700