in vivo correlation helps fully characterize PK and generate hypotheses for new formulations or specific populations." />
A mechanism-Based Approach for Absorption Modeling: The Gastro-Intestinal Transit Time (GITT) Model
详细信息    查看全文
  • 作者:Emilie Hénin (1)
    Martin Bergstrand (1)
    Joseph F. Standing (1)
    Mats O. Karlsson (1)
  • 关键词:absorption ; model ; non ; linear mixed effect ; semi ; mechanistic
  • 刊名:The AAPS Journal
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:14
  • 期:2
  • 页码:155-163
  • 全文大小:470KB
  • 参考文献:1. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217-4. doi:10.1208/s12248-009-9098-z . CrossRef
    2. Hirtz J. The gastrointestinal absorption of drugs in man: a review of current concepts and methods of investigation. Br J Clin Pharmacol. 1985;19 Suppl 2:77S-3S.
    3. Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Gonzalez A, Diez R, / et al. Effects of slowed gastrointestinal motility on levodopa pharmacokinetics. Auton Neurosci. 2010;156(1-):67-2. doi:10.1016/j.autneu.2010.03.016 . CrossRef
    4. Hardoff R, Sula M, Tamir A, Soil A, Front A, Badarna S, / et al. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord. 2001;16(6):1041-. doi:10.1002/mds.1203 . CrossRef
    5. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119-5. CrossRef
    6. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50 Suppl 1:S41-7. CrossRef
    7. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp((R)) Population-based ADME Simulator. Expert Opin Drug Metab Toxicol. 2009. doi: 10.1517/17425250802691074
    8. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711-6. doi:10.1007/s10928-007-9066-0 . CrossRef
    9. Plusquellec Y, Campistron G, Staveris S, Barre J, Jung L, Tillement JP, / et al. A double-peak phenomenon in the pharmacokinetics of veralipride after oral administration: a double-site model for drug absorption. J Pharmacokinet Biopharm. 1987;15(3):225-9. CrossRef
    10. Plusquellec Y, Efthymiopoulos C, Duthil P, Houin G. A pharmacokinetic model for multiple sites discontinuous gastrointestinal absorption. Med Eng Phys. 1999;21(8):525-2. CrossRef
    11. Godfrey KR, Arundel PA, Dong Z, Bryant R. Modelling the Double Peak Phenomenon in pharmacokinetics. Comput Methods Programs Biomed. 2010. doi: 10.1016/j.cmpb.2010.03.007
    12. Lindberg-Freijs A, Karlsson MO. Dose dependent absorption and linear disposition of cyclosporin A in rat. Biopharm Drug Dispos. 1994;15(1):75-6. CrossRef
    13. Weitschies W, Blume H, Monnikes H. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. Eur J Pharm Biopharm. 2010;74(1):93-01. doi:10.1016/j.ejpb.2009.07.007 . CrossRef
    14. Bergstrand M, Soderlind E, Weitschies W, Karlsson MO. Mechanistic modeling of a magnetic marker monitoring study linking gastrointestinal tablet transit, / in vivo drug release, and pharmacokinetics. Clin Pharmacol Ther. 2009;86(1):77-3. doi:10.1038/clpt.2009.43 . CrossRef
    15. Weitschies W, Kosch O, Monnikes H, Trahms L. Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv Drug Deliv Rev. 2005;57(8):1210-2. doi:10.1016/j.addr.2005.01.025 . CrossRef
    16. Weitschies W, Wedemeyer RS, Kosch O, Fach K, Nagel S, Soderlind E, / et al. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108(2-):375-5. doi:10.1016/j.jconrel.2005.08.018 . CrossRef
    17. Chan KK, Wnuck K, Bell CL. Microcomputer-based programs for calculating mean and variance residence time by the method of prospective areas. Comput Methods Programs Biomed. 1987;25(1):23-0. CrossRef
    18. Carlsson KC, Savic RM, Hooker AC, Karlsson MO. Modeling subpopulations with the $MIXTURE subroutine in NONMEM: finding the individual probability of belonging to a subpopulation for the use in model analysis and improved decision making. AAPS J. 2009;11(1):148-4. doi:10.1208/s12248-009-9093-4 . CrossRef
    19. Davies NM, Anderson KE. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin Pharmacokinet. 1997;33(3):184-13. CrossRef
    20. Brogden RN, Heel RC, Pakes GE, Speight TM, Avery GS. Diclofenac sodium: a review of its pharmacological properties and therapeutic use in rheumatic diseases and pain of varying origin. Drugs. 1980;20(1):24-8. CrossRef
    21. Standing JF, Howard RF, Johnson A, Savage I, Wong IC. Population pharmacokinetics of oral diclofenac for acute pain in children. Br J Clin Pharmacol. 2008;66(6):846-3. doi:10.1111/j.1365-2125.2008.03289.x . CrossRef
    22. Korpela R, Olkkola KT. Pharmacokinetics of intravenous diclofenac sodium in children. Eur J Clin Pharmacol. 1990;38(3):293-. CrossRef
    23. Holford NH. A size standard for pharmacokinetics. Clin Pharmacokinet. 1996;30(5):329-2. CrossRef
    24. Beal SL, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User’s Guides (1989-009). Ellicott City, MD, USA: Icon; 2009.
    25. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85-4. doi:10.1016/j.cmpb.2003.11.003 . CrossRef
    26. R DCT. R: A Language and Environment for Statistical Computing. R.2.12.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2010.
    27. Jonsson EN, Karlsson MO. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51-4. CrossRef
    28. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11(2):371-0. doi:10.1208/s12248-009-9112-5 . CrossRef
    29. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401-1. doi:10.1007/s10928-008-9094-4 . CrossRef
    30. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481-04. CrossRef
    31. Willis JV, Kendall MJ, Flinn RM, Thornhill DP, Welling PG. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. Eur J Clin Pharmacol. 1979;16(6):405-0. CrossRef
    32. Hénin E, Bergstrand B, Karlsson MO. Meta-analysis of Magnetic Marker Monitoring data to characterize tablet movement through the gastrointestinal tract. PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe. 2011;PAGE 20 (2011) Abstr 2249 [www.page-meeting.org/?abstract=2249].
  • 作者单位:Emilie Hénin (1)
    Martin Bergstrand (1)
    Joseph F. Standing (1)
    Mats O. Karlsson (1)

    1. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
  • ISSN:1550-7416
文摘
Absorption models used in the estimation of pharmacokinetic drug characteristics from plasma concentration data are generally empirical and simple, utilizing no prior information on gastro-intestinal (GI) transit patterns. Our aim was to develop and evaluate an estimation strategy based on a mechanism-based model for drug absorption, which takes into account the tablet movement through the GI transit. This work is an extension of a previous model utilizing tablet movement characteristics derived from magnetic marker monitoring (MMM) and pharmacokinetic data. The new approach, which replaces MMM data with a GI transit model, was evaluated in data sets where MMM data were available (felodipine) or not available (diclofenac). Pharmacokinetic profiles in both datasets were well described by the model according to goodness-of-fit plots. Visual predictive checks showed the model to give superior simulation properties compared with a standard empirical approach (first-order absorption rate-?lag-time). This model represents a step towards an integrated mechanism-based NLME model, where the use of physiological knowledge and in vitro-em class="a-plus-plus">in vivo correlation helps fully characterize PK and generate hypotheses for new formulations or specific populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700