Potential distribution around a test charge in a positive dust-electron plasma
详细信息    查看全文
  • 作者:S. Ali
  • 关键词:dusty plasmas ; dust charge fluctuations ; positively charged dusty plasma ; shielding and dynamical potentials
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:3
  • 全文大小:323 KB
  • 参考文献:1.T. Peter, Linearized potential of an ion moving through plasma, J. Plasma Phys. 44(02), 269 (1990)CrossRef ADS
    2.T. Peter and J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma (I): Linear and nonlinear Vlasov theory for the stopping power, Phys. Rev. A 43(4), 1998 (1991)CrossRef ADS
    3.J. Neufeld and R. H. Ritchie, Passage of charged particles through plasma, Phys. Rev. 98(6), 1632 (1955)CrossRef ADS MATH
    4.J. R. Sanmartin and S. H. Lam, Far-Wake structure in Rarefield plasma flows past charged bodies, Phys. Fluids 14(1), 62 (1971)CrossRef ADS
    5.L. Chen, A. B. Langdon, and M. A. Lieberman, Shielding of moving test particles in warm, isotropic plasma, J. Plasma Phys. 9(03), 311 (1973)CrossRef ADS
    6.M. Nambu, S. V. Vladimirov, and P. K. Shukla, Attractive forces between charged particulates in plasmas, Phys. Lett. A 203(1), 40 (1995)CrossRef ADS
    7.S. V. Vladimirov and M. Nambu, Attraction of charged particulates in plasmas with finite flows, Phys. Rev. E 52(3), R2172 (1995)CrossRef ADS
    8.M. Salimullah and M. Nambu, Crystallization in a magnetized and inhomogeneous dusty plasma with streaming ions, J. Phys. Soc. Jpn. 69(6), 1688 (2000)CrossRef ADS
    9.M. Nambu, B. J. Saikia, and T. Hada, Wake potential around a test dust particulate in a magnetized plasma with streaming ions, J. Phys. Soc. Jpn. 70(5), 1175 (2001)CrossRef ADS
    10.M. Nambu, three-dimensional wake potential due to ion cyclotron waves in a flowing magnetized plasma, Phys. Scr. T98, 130 (2002)ADS
    11.M. H. Nasim, Energy loss of charged projectiles in a dusty plasma, Ph.D. thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1999
    12.H. Ikezi, Coulomb solid of small particles in plasmas, Phys. Fluids 29(6), 1764 (1986)CrossRef ADS
    13.J. H. Chu and I. Lin, Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas, Phys. Lett. A 72(25), 4009 (1994)CrossRef
    14.J. H. Chu, J. B. Du, and I. Lin, Coulomb solids and lowfrequency fluctuations in RF dusty plasmas, J. Phys. D 27(2), 296 (1994)CrossRef ADS
    15.H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Plasma crystal: Coulomb crystallization in a dusty plasma, Phys. Rev. Lett. 73(5), 652 (1994)CrossRef ADS
    16.Y. Hayashi and K. Tachibana, Observation of coulombcrystal formation from carbon particles grown in a Methane plasma, Jpn. J. Appl. Phys. 33, L804 (1994)CrossRef ADS
    17.A. Melzer, T. Trottenberg, and A. Piel, Experimental determination of the charge on dust particles forming Coulomb lattices, Phys. Lett. A 191(3–4), 301 (1994)CrossRef ADS
    18.M. Nambu and H. Akama, Attractive potential between resonant electrons, Phys. Fluids 28(7), 2300 (1985)CrossRef ADS
    19.N. N. Rao and P. K. Shukla, Nonlinear dust-acoustic waves with dust charge fluctuations, Planet. Space Sci. 42(3), 221 (1994)CrossRef ADS
    20.J. X. Ma and P. K. Shukla, Compact dispersion relation for parametric instabilities of electromagnetic waves in dusty plasmas, Phys. Plasmas 1(5), 1506 (1995)CrossRef ADS
    21.R. K. Varma, P. K. Shukla, and V. Krishan, Electrostatic oscillations in the presence of grain-charge perturbations in dusty plasmas, Phys. Rev. E 47(5), 3612 (1993)CrossRef ADS
    22.P. K. Shukla, in: The Physics of Dusty Plasmas, edited by P. K. Shukla, D. A. Mendis, and V. W. Chow, Singapore: World Scientific, 1996
    23.F. Melandsc, T. Aslaksen, and O. Havnes, A new damping effect for the dust-acoustic wave, Planet. Space Sci. 41(4), 321 (1993)CrossRef ADS
    24.M. H. Nasim, P. K. Shukla, and G. Murtaza, Effect of dust charge fluctuations on energy loss of a test dust charged particulate in a dusty plasma, Phys. Plasmas 6(5), 1409 (1999)CrossRef ADS
    25.M. H. Nasim, A. M. Mirza, G. Murtaza, and P. K. Shukla, Energy loss of a test charge in dusty plasmas: collective and individual particle contributions, Phys. Scr. 59(5), 379 (1999)CrossRef ADS
    26.S. Ali, M. H. Nasim, and G. Murtaza, Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma, Phys. Plasmas 10(11), 4207 (2003)CrossRef ADS
    27.M. Horanyi, G. E. Morfill, and E. Griin, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere, Nature 363(6425), 144 (1993)CrossRef ADS
    28.O. Havnes, J. Trøim, T. Blix, W.Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res. 101(A5), 10839 (1996)CrossRef ADS
    29.V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V. Chernyschev, Particle ordered structures in a strongly coupled classical thermal plasma, Phys. Rev. E 54(3), R2236 (1996)CrossRef ADS
    30.A. A. Samarian, O. S. Vaulina, A. P. Nefedov, V. E. Fortov, B. W. James, and O. F. Petrov, Positively charged particles in dusty plasmas, Phys. Rev. E 64, 056407 (2001)CrossRef ADS
    31.M. Rosenberg and D. A. Mendis, UV-induced Coulomb crystallization in a dusty gas, IEEE Trans. Plasma Sci. 23(2), 177 (1995)CrossRef ADS
    32.P. K. Shukla and D. Resendes, Dust acoustic waves with dust charge fluctuations — revisited, Phys. Plasmas 7(5), 1614 (2000)CrossRef ADS MathSciNet
    33.P. K. Shukla, Dust acoustic wave in a thermal dusty plasma, Phys. Rev. E 61, 7249 (2000)CrossRef ADS
    34.S. Ghosh, Dust acoustic shock waves in two-component dusty plasma, New J. Phys. 5, 142 (2003)
    35.M. Horanyi, B. Walch, S. Robertson, and D. Alexander, Electrostatic charging properties of Apollo 17 lunar dust, J. Geophys. Res. 103(E4), 8575 (1998)CrossRef ADS
    36.C. K. Goertz, Dusty plasmas in the solar system, Rev. Geophys. 27(2), 271 (1989)CrossRef ADS
    37.G. L. Delzanno, G. Lapenta, and M. Rosenberg, Attractive potential around a thermionically emitting microparticle, Phys. Rev. Lett. 92(3), 350021 (2004)CrossRef
    38.S. K. Paul, IJCIT 2, 25 (2012)ADS
    39.P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, U.K.: Institute of Physics Publishing Ltd., 2002CrossRef
    40.M. Sodha and S. Guha, Physics of Colloidal Plasmas, Adv. Plasma Phys. 4, 219 (1971)ADS
    41.M. Rosenberg, D. A. Mendis, and D. Sheenan, UV-induced Coulomb crystallization of dust grains in high-pressure gas, IEEE Trans. Plasma Sci. 24(6), 1422 (1996)CrossRef ADS
    42.S. A. Khrapak, A. P. Nefedov, O. F. Petrov, and O. S. Vaulina, Dynamical properties of random charge fluctuations in a dusty plasma with different charging mechanisms, Phys. Rev. E 59, 6017 (1999)CrossRef ADS
    43.D. B. Fried and S. D. Conte, The Plasma Dispersion Function, New York: Academic Press, 1961
    44.N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, New York: McGraw-Hill, 1973
    45.X. G. Wang and Q. B. Luan, Low frequency Whistler waves excited in fast magnetic reconnection processes, Front. Phys. 8(5), 585 (2013)CrossRef MathSciNet
    46.Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)CrossRef
    47.D. Montgomery, G. Joyce, and R. Sugihara, Inverse third power law for the shielding of test particles, Plasma Phys. 10(7), 681 (1968)CrossRef ADS
    48.S. A. Khrapak and G. Morfill, Waves in two component electron-dust plasma, Phys. Plasmas 8(6), 2629 (2001)CrossRef ADS
    49.P. Debye and E. Hückel, The theory of electrolytes (I): Lowering of freezing point and related phenomena, Phys. Z. 24, 185 (1923)MATH
    50.M. Rosenberg and P. K. Shukla, On beam-plasma interaction in a dust-electron plasma, IEEE Trans. Plasma Sci. 29(2), 202 (2001)CrossRef ADS
    51.P. K. Shukla and N. N. Rao, Coulomb crystallization in colloidal plasmas with streaming ions and dust grains, Phys. Plasmas 3(5), 1770 (1996)CrossRef ADS
  • 作者单位:S. Ali (1)

    1. National Centre for Physics (NCP) at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad, 44000, Pakistan
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the dust-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov–Poisson equations coupled with the dust charging equation is solved by using the space–time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Debye–H¨uckel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in twocomponent plasmas, where positively charged dust grains are present.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700