Insights into metazoan evolution from alvinella pompejana cDNAs
详细信息    查看全文
  • 作者:Nicolas Gagnière (1) (10) (11) (9)
    Didier Jollivet (2) (3)
    Isabelle Boutet (2) (3)
    Yann Brélivet (1) (10) (11) (9)
    Didier Busso (1) (10) (11) (9)
    Corinne Da Silva (4)
    Fran?oise Gaill (5)
    Dominique Higuet (6)
    Stéphane Hourdez (2) (3)
    Bernard Knoops (7)
    Fran?ois Lallier (2) (3)
    Emmanuelle Leize-Wagner (8)
    Jean Mary (2) (3)
    Dino Moras (1) (10) (11) (9)
    Emmanuel Perrodou (1) (10) (11) (9)
    Jean-Fran?ois Rees (7)
    Béatrice Segurens (4)
    Bruce Shillito (6)
    Arnaud Tanguy (2) (3)
    Jean-Claude Thierry (1) (10) (11) (9)
    Jean Weissenbach (4)
    Patrick Wincker (4)
    Franck Zal (2) (3)
    Olivier Poch (1) (10) (11) (9)
    Odile Lecompte (1) (10) (11) (9)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:1605KB
  • 参考文献:1. De Robertis EM: Evo-devo: variations on ancestral themes. / Cell 2008, 132 (2) : 185-95. CrossRef
    2. McDougall C, Hui JH, Monteiro A, Takahashi T, Ferrier DE: Annelids in evolutionary developmental biology and comparative genomics. / Parasite 2008, 15 (3) : 321-28.
    3. Morris SC: / The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press; 1998.
    4. Arendt D, Nubler-Jung K: Inversion of dorsoventral axis? / Nature 1994, 371 (6492) : 26. CrossRef
    5. Irvine SM, Martindale MQ: Cellular and molecular mechanisms of segmentation in annelids. / Seminars in Cell & Developmental Biology 1996, 7 (4) : 593-04. CrossRef
    6. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA: Evidence for a clade of nematodes, arthropods and other moulting animals. / Nature 1997, 387 (6632) : 489-93. CrossRef
    7. Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, / et al.: Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. / Science 2005, 310 (5752) : 1325-326. CrossRef
    8. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, / et al.: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. / Science 2007, 317 (5834) : 86-4. CrossRef
    9. Desbruyeres D, Laubier L: Alvinella pompejana gen. sp. now., aberrant Ampharetidae from East Pacific Rise hydrothermal vents. / Oceanol Acta 1980, 3: 267-74.
    10. Cary SC, Shank T, Stein J: Worms bask in extreme temperatures. / Nature 1998, 391 (6667) : 545-46. CrossRef
    11. Chevaldonné P, Desbruyeres D, Childress JJ: Some like it hot... and some even hotter. / Nature 1992, 359 (6396) : 593-94. CrossRef
    12. Le Bris N, Zbinden M, Gaill F: Processes controlling the physico-chemical micro-environments associated with Pompeii worms. / Deep-Sea Research Part I-Oceanographic Research Papers 2005, 52 (6) : 1071-083. CrossRef
    13. Le Bris N, Gaill F: How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? / ReViews in Environmental Science and BioTechnology 2007, 6: 102-19.
    14. Desbruyeres D, Chevaldonné P, Alayse AM, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin PM, Cosson R, Caprais JC, / et al.: Biology and ecology of the Pompeii worm (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments. / Deep-sea research 1998, 45 (1-) : 383-22. CrossRef
    15. Pradillon F, Zbinden M, Mullineaux LS, Gaill F: Colonisation of newly-opened habitat by a pioneer species, Alvinella pompejana (Polychaeta: Alvinellidae), at East Pacific Rise vent sites. / Marine Ecology-Progress Series 2005, 302: 147-57. CrossRef
    16. Girguis PR, Lee RW: Thermal preference and tolerance of alvinellids. / Science 2006, 312 (5771) : 231. CrossRef
    17. Dahlhoff E, Somero GN: Pressure and temperature adaptation of cytosolic malate dehydrogenases of shallowand deep-living marine invertebrates: evidence for high body temperatures in hydrothermal vent animals. / Journal of Experimental Biology 1991, 159: 473-87.
    18. Jollivet D, Desbruyeres D, Ladrat C, Laubier L: Evidence for differences in the allozyme thermostability of deep-sea hydrothermal vent polychaetes (Alvinellidae): a possible selection by habitat. / Marine Ecology Progress Series 1995, 123: 125-36. CrossRef
    19. Burjanadze TV: New analysis of the phylogenetic change of collagen thermostability. / Biopolymers 2000, 53: 523-28. CrossRef
    20. Sicot FX, Mesnage M, Masselot M, Exposito JY, Garrone R, Deutsch J, Gaill F: Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. / J Mol Biol 2000, 302 (4) : 811-20. CrossRef
    21. Piccino P, Viard F, Sarradin PM, Le Bris N, Le Guen D, Jollivet D: Thermal selection of PGM allozymes in newly founded populations of the thermotolerant vent polychaete Alvinella pompejana. / Proc Biol Sci 2004, 271 (1555) : 2351-359. CrossRef
    22. Henscheid KL, Shin DS, Cary SC, Berglund JA: The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. / Biochim Biophys Acta 2005, 1727 (3) : 197-07.
    23. Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA: Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. / J Mol Biol 2009, 385 (5) : 1534-555. CrossRef
    24. Grzymski JJ, Murray AE, Campbell BJ, Kaplarevic M, Gao GR, Lee C, Daniel R, Ghadiri A, Feldman RA, Cary SC: Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. / Proc Natl Acad Sci USA 2008, 105 (45) : 17516-7521. CrossRef
    25. Pesole G, Grillo G, Larizza A, Liuni S: The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis. / Brief Bioinform 2000, 1 (3) : 236-49. CrossRef
    26. Zhang L, Kasif S, Cantor CR, Broude NE: GC/AT-content spikes as genomic punctuation marks. / Proc Natl Acad Sci USA 2004, 101 (48) : 16855-6860. CrossRef
    27. Bechtel JM, Wittenschlaeger T, Dwyer T, Song J, Arunachalam S, Ramakrishnan SK, Shepard S, Fedorov A: Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures. / BMC Genomics 2008, 9: 284. CrossRef
    28. Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey PJ, Duarte J, Saccone C, Pesole G: UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. / Nucleic Acids Res 2005, (33 Database) : D141-46.
    29. Duret L: Evolution of synonymous codon usage in metazoans. / Current Opinion in Genetics & Development 2002, 12 (6) : 640-49. CrossRef
    30. Eyre-Walker A: Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? / Mol Biol Evol 1996, 13 (6) : 864-72.
    31. Duret L, Mouchiroud D: Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. / Proc Natl Acad Sci USA 1999, 96 (8) : 4482-487. CrossRef
    32. dos Reis M, Wernisch L: Estimating translational selection in eukaryotic genomes. / Mol Biol Evol 2009, 26 (2) : 451-61. CrossRef
    33. Lecompte O, Thompson JD, Plewniak F, Thierry J, Poch O: Multiple alignment of complete sequences (MACS) in the post-genomic era. / Gene 2001, 270 (1-) : 17-0. CrossRef
    34. Animal Genome Size Database [http://www.genomesize.com]
    35. Bonnivard E, Catrice O, Ravaux J, Brown SC, Higuet D: Survey of genome size in 28 hydrothermal vent species covering 10 families. / Genome 2009, 52 (6) : 524-36. CrossRef
    36. Dixon DR, Jolly MT, Vevers WF, Dixon LRJ: Chromosomes of Pacific hydrothermal vent invertebrates: towards a greater understanding of the relationship between chromosome and molecular evolution. / Journal of the Marine Biological Association of the United Kingdom 2009, 90: 15-1. CrossRef
    37. Alvinella pompejana website [http://alvinella.igbmc.fr/Alvinella/]
    38. Gordon D: Viewing and editing assembled sequences using Consed. / Curr Protoc Bioinformatics 2003., Chapter 11: Unit11 12
    39. Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat AB, / et al.: A global assembly of cotton ESTs. / Genome Res 2006, 16 (3) : 441-50. CrossRef
    40. Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, / et al.: Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. / BMC Genomics 2005, 6: 144. CrossRef
    41. Karim N, Jones JT, Okada H, Kikuchi T: Analysis of expressed sequence tags and identification of genes encoding cell-wall-degrading enzymes from the fungivorous nematode Aphelenchus avenae. / BMC Genomics 2009, 10: 525. CrossRef
    42. Hourdez S, Weber RE: Molecular and functional adaptations in deep-sea hemoglobins. / J Inorg Biochem 2005, 99 (1) : 130-41. CrossRef
    43. Hourdez S, Lallier FH, De Cian MC, Green BN, Weber RE, Toulmond A: Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): functional properties of intracellular and extracellular hemoglobins. / Physiol Biochem Zool 2000, 73 (3) : 365-73. CrossRef
    44. Mary J, Rogniaux H, Rees JF, Zal F: Response of Alvinella pompejana to variable oxygen stress: a proteomic approach. / Proteomics 10 (12) : 2250-258.
    45. Marie B, Genard B, Rees J, Zal F: Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. / Marine Biology 2006, 150: 273-84. CrossRef
    46. Dixon D, Dixon L, Shillito B, Gwynn J: Background and induced levels of DNA damage in PaciWc deep-sea vents polychaetes: the case for avoidance. / Cahier de Biologie Marine 2002, 43: 333-36.
    47. Ahearn GA, Mandal PK, Mandal A: Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. / J Comp Physiol B 2004, 174 (6) : 439-52. CrossRef
    48. Gaill F, Halpern S, Quintana C, Desbruyeres D: Presence intracellulaire d'arsenic et de zinc assocides au soufre chez une Polychete des sources hydrothermales. / C R Acad Sci III 1984, 298: 331-35.
    49. Vovelle J, Gaill F: Données morphologiques, histochimiques et microanalytiques sur I'élaboration du tube organominéral d'Alvinella pompejana, Polychète des sources hydrothermales, et leurs implications phylogénétiques. / Zool Scripta 1986, 15 (1) : 33-3. CrossRef
    50. Cipollone R, Ascenzi P, Visca P: Common themes and variations in the rhodanese superfamily. / IUBMB Life 2007, 59 (2) : 51-9. CrossRef
    51. Vogt G, Woell S, Argos P: Protein thermal stability, hydrogen bonds, and ion pairs. / J Mol Biol 1997, 269 (4) : 631-43. CrossRef
    52. Haney PJ, Stees M, Konisky J: Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. / J Biol Chem 1999, 274 (40) : 28453-8458. CrossRef
    53. Szilagyi A, Zavodszky P: Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. / Structure 2000, 8 (5) : 493-04. CrossRef
    54. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, / et al.: Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. / Genome Res 2003, 13 (7) : 1572-579. CrossRef
    55. Berezovsky IN, Shakhnovich EI: Physics and evolution of thermophilic adaptation. / Proc Natl Acad Sci USA 2005, 102 (36) : 12742-2747. CrossRef
    56. Robinson-Rechavi M, Alibes A, Godzik A: Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. / J Mol Biol 2006, 356 (2) : 547-57. CrossRef
    57. Wolf YI, Rogozin IB, Koonin EV: Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. / Genome Res 2004, 14 (1) : 29-6. CrossRef
    58. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward automatic reconstruction of a highly resolved tree of life. / Science 2006, 311 (5765) : 1283-287. CrossRef
    59. Vilmos P, Gaudenz K, Hegedus Z, Marsh JL: The Twisted gastrulation family of proteins, together with the IGFBP and CCN families, comprise the TIC superfamily of cysteine rich secreted factors. / Mol Pathol 2001, 54 (5) : 317-23. CrossRef
    60. Alcivar A, Hu S, Tang J, Yang X: DEDD and DEDD2 associate with caspase-8/10 and signal cell death. / Oncogene 2003, 22 (2) : 291-97. CrossRef
    61. Tinel A, Tschopp J: The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. / Science 2004, 304 (5672) : 843-46. CrossRef
    62. Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V: Selenoprotein function and muscle disease. / Biochim Biophys Acta 2009, 1790 (11) : 1569-574.
    63. Hughes AL, Friedman R: Differential loss of ancestral gene families as a source of genomic divergence in animals. / Proc Biol Sci 2004, 271 (Suppl 3) : S107-09. CrossRef
    64. Zmasek CM, Zhang Q, Ye Y, Godzik A: Surprising complexity of the ancestral apoptosis network. / Genome Biol 2007, 8 (10) : R226. CrossRef
    65. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TC: The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. / Genome Biol 2007, 8 (4) : R59. CrossRef
    66. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, / et al.: The Trichoplax genome and the nature of placozoans. / Nature 2008, 454 (7207) : 955-60. CrossRef
    67. Natesan S, Jayasundaramma B, Ramamurthi R, Reddy SR: Presence of a partial urea cycle in the leech, Poecilobdella granulosa. / Experientia 1992, 48 (8) : 729-31. CrossRef
    68. Roy SW: Intron-rich ancestors. / Trends Genet 2006, 22 (9) : 468-71. CrossRef
    69. Glansdorff N, Xu Y, Labedan B: The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. / Biol Direct 2008, 3: 29. CrossRef
    70. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. / Genome Res 1998, 8 (3) : 175-85.
    71. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. / Genome Res 1998, 8 (3) : 186-94.
    72. The Univec database [http://www.phrap.org/phrap_documentation.html]
    73. Huang X, Madan A: CAP3: A DNA sequence assembly program. / Genome Res 1999, 9 (9) : 868-77. CrossRef
    74. consortium U: The universal protein resource (UniProt). / Nucleic Acids Res 2008, (36 Database) : D190-95.
    75. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. / Nucleic Acids Res 2000, 28 (1) : 235-42. CrossRef
    76. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Res 1997, 25 (17) : 3389-402. CrossRef
    77. Lottaz C, Iseli C, Jongeneel CV, Bucher P: Modeling sequencing errors by combining Hidden Markov models. / Bioinformatics 2003, 19 (Suppl 2) : ii103-12.
    78. CodonW [http://sourceforge.net/projects/codonw]
    79. Peden JF: Analysis of codon usage. In / Phd thesis. University of Nottingham; 1999.
    80. Plewniak F, Bianchetti L, Brelivet Y, Carles A, Chalmel F, Lecompte O, Mochel T, Moulinier L, Muller A, Muller J, / et al.: PipeAlign: A new toolkit for protein family analysis. / Nucleic Acids Res 2003, 31 (13) : 3829-832. CrossRef
    81. Thompson JD, Muller A, Waterhouse A, Procter J, Barton GJ, Plewniak F, Poch O: MACSIMS: multiple alignment of complete sequences information management system. / BMC Bioinformatics 2006, 7: 318. CrossRef
    82. Chalmel F, Lardenois A, Thompson JD, Muller J, Sahel JA, Leveillard T, Poch O: GOAnno: GO annotation based on multiple alignment. / Bioinformatics 2005, 21 (9) : 2095-096. CrossRef
    83. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, / et al.: Pfam: clans, web tools and services. / Nucleic Acids Res 2006, (34 Database) : D247-51.
    84. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, / et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. / Nat Genet 2000, 25 (1) : 25-9. CrossRef
    85. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M: KEGG Atlas mapping for global analysis of metabolic pathways. / Nucleic Acids Res 2008, 36 (Web Server issue) : W423-26. CrossRef
    86. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P: STRING 7--recent developments in the integration and prediction of protein interactions. / Nucleic Acids Res 2007, (35 Database) : D358-62.
    87. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, / et al.: Integration of biological networks and gene expression data using Cytoscape. / Nat Protoc 2007, 2 (10) : 2366-382. CrossRef
    88. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. / Genome Biol 2003, 4 (5) : P3. CrossRef
    89. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. / Bioinformatics 2003, 19 (12) : 1572-574. CrossRef
    90. Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. / Comput Appl Biosci 1997, 13 (5) : 555-56.
    91. Se-Al [http://tree.bio.ed.ac.uk/software/seal/]
    92. Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2). / Cladistics 1989, 5: 164-66.
    93. Sweet RM, Eisenberg D: Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. / J Mol Biol 1983, 171 (4) : 479-88. CrossRef
  • 作者单位:Nicolas Gagnière (1) (10) (11) (9)
    Didier Jollivet (2) (3)
    Isabelle Boutet (2) (3)
    Yann Brélivet (1) (10) (11) (9)
    Didier Busso (1) (10) (11) (9)
    Corinne Da Silva (4)
    Fran?oise Gaill (5)
    Dominique Higuet (6)
    Stéphane Hourdez (2) (3)
    Bernard Knoops (7)
    Fran?ois Lallier (2) (3)
    Emmanuelle Leize-Wagner (8)
    Jean Mary (2) (3)
    Dino Moras (1) (10) (11) (9)
    Emmanuel Perrodou (1) (10) (11) (9)
    Jean-Fran?ois Rees (7)
    Béatrice Segurens (4)
    Bruce Shillito (6)
    Arnaud Tanguy (2) (3)
    Jean-Claude Thierry (1) (10) (11) (9)
    Jean Weissenbach (4)
    Patrick Wincker (4)
    Franck Zal (2) (3)
    Olivier Poch (1) (10) (11) (9)
    Odile Lecompte (1) (10) (11) (9)

    1. Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, F-67400, Illkirch, France
    10. CNRS, UMR7104, F-67400, Illkirch, France
    11. Faculté des Sciences de la Vie, Université de Strasbourg, F-67000, Strasbourg, France
    9. INSERM, U596, F-67400, Illkirch, France
    2. CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29682, Roscoff, France
    3. UPMC Université Paris 6, Station Biologique de Roscoff, 29682, Roscoff, France
    4. Genoscope - Centre National de Séquen?age, 2 rue Gaston Crémieux, CP5706, 91057, Evry cedex, France
    5. CNRS Institut Ecologie et Environnement (INEE), 3 rue Michel-Ange, 75794, Paris cedex 16, France
    6. Systématique, Adaptation et Evolution, Campus de Jussieu, UPMC Université Paris 6, UMR 7138, 75005, Paris, France
    7. Laboratoire de Biologie Cellulaire, Institut des Sciences de la vie, Université Catholique de Louvain, Croix du sud 5, B-1348, Louvain-la-neuve, Belgium
    8. UMR 7177 CNRS-UDS, LDSM2 Institut de Chimie de Strasbourg, 1 rue Blaise Pascal, BP 296 R8, 67008, Strasbourg cedex, France
文摘
Background Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. Results We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. Conclusions Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700