Chiral NMR Solvating Additives for Differentiation of Enantiomers
详细信息    查看全文
  • 作者:Gloria Uccello-Barretta (12)
    Federica Balzano (12)
  • 关键词:Chiral discrimination ; Chiral solvating agents ; Enantiomeric excess ; Nuclear magnetic resonance
  • 刊名:Topics in Current Chemistry
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:341
  • 期:1
  • 页码:69-131
  • 全文大小:1,825 KB
  • 参考文献:1. Raban M, Mislow K (1965) Determination of optical purity by nuclear magnetic resonance spectroscopy. Tetrahedron Lett 6:4249鈥?253
    2. Pirkle WH (1966) The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra. I. J Am Chem Soc 88:1837
    3. Raban M, Mislow K (1967) Modern methods for the determination of optical purity. Top Stereochem 2:199鈥?30
    4. Dale JA, Mosher HS (1968) Nuclear magnetic resonance nonequivalence of diastereoisomeric esters of 伪-substituted phenylacetic acids for the determination of stereochemical purity. J Am Chem Soc 90:3732鈥?738
    5. Campbell J (1972) Determination of optical and enantiomeric purity by nuclear magnetic resonance spectroscopy (NMR). Aldrichimica Acta 5:29鈥?2
    6. Sullivan GR (1978) Chiral lanthanide shift reagents. Top Stereochem 10:287鈥?29
    7. Pirkle WH, Hoover DJ (1982) NMR chiral solvating agents. Top Stereochem 13:263鈥?31
    8. Yamaguchi S (1983) Nuclear magnetic resonance analysis using chiral derivatives. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 125鈥?52
    9. Fraser RR (1983) Nuclear magnetic resonance analysis using chiral shift reagents. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 173鈥?96
    10. Weisman GR (1983) Nuclear magnetic resonance analysis using chiral solvating agents. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 153鈥?71
    11. Schurig V (1985) Current methods for determination of enantiomeric compositions. Part 2. NMR spectroscopy with chiral lanthanide shift reagents. Kontakte (Darmstadt) 22鈥?6
    12. Aboul-Enein HY (1988) NMR methods for optical purity determination of pharmaceuticals. Anal Lett 21:2155鈥?163
    13. Parker D (1991) NMR determination of enantiomeric purity. Chem Rev 91:1441鈥?457
    14. Casy AF (1983) Chiral discrimination by NMR spectroscopy. Trends Anal Chem 12:185鈥?89
    15. Hulst R, Kellogg RM, Feringa BL (1995) New methodologies for enantiomeric excess (ee) determination based on phosphorus NMR. Rec Trav Chim Pays Bas 114:115鈥?38
    16. Rothchild R (2000) NMR methods for determination of enantiomeric excess. Enantiomer 5:457鈥?71
    17. Wenzel TJ (2007) Discrimination of chiral compounds using NMR spectroscopy. Wiley, New York
    18. Wenzel TJ, Wilcox JD (2003) Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15:256鈥?70
    19. Uccello-Barretta G, Balzano F, Salvadori P (2006) Enantiodiscrimination by NMR spectroscopy. Curr Pharm Des 12:4023鈥?045
    20. Kumar AP, Jin D, Lee Y-I (2009) Recent development on spectroscopic methods for chiral analysis of enantiomeric compounds. Appl Spectrosc Rev 44:267鈥?16
    21. Yip Y, Wong S, Choi S (2011) Assessment of the chemical and enantiomeric purity of organic reference materials. Trends Anal Chem 30:628鈥?40
    22. Wenzel TJ, Chisholm CD (2011) Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry. Prog Nucl Magn Reson Spectrosc 59:1鈥?3
    23. Brevard C (1983) The multinuclear approach to NMR spectroscopy. Reidel Publishing Company, Boston, pp 1鈥?7
    24. Klika KD (2009) Use of sub-stoichiometric amounts of chiral auxiliaries for enantiodifferentiation by NMR; caveats and potential utility. Tetrahedron Asymmetry 20:1099鈥?102
    25. Pirkle WH, Sikkenga DL (1977) The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones. Consequences of three-point interactions. J Org Chem 42:1370鈥?374
    26. Pirkle WH, Rinaldi PL (1977) Nuclear magnetic resonance determination of enantiomeric compositions of oxaziridines using chiral solvating agents. J Org Chem 42:3217鈥?219
    27. Isiklan M, Asmafiliz N, Ozalp EE, Ilter EE, Kilic Z, Cosut B, Yesilot S, Kilic A, Ozturk A, Hokelek T, Koc Bilir LY, Acik L, Akyuz E (2010) Phosphorus鈥搉itrogen compounds. 21. Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclic phosphazene derivatives. The NMR behaviors of chiral phosphazenes with stereogenic centers upon the addition of chiral solvating agents. Inorg Chem 49:7057鈥?071
    28. Cosut B, Ibisoglu H, Kilic A, Yesilot S (2009) Synthesis and enantiomeric analysis of cyclotriphosphazene derivatives with one center of chirality. Inorg Chim Acta 362:4931鈥?936
    29. Coles SJ, Davies DB, Eaton RJ, Hursthouse MB, Kilic A, Shaw RA, Uslu A (2006) The structural and stereogenic properties of pentaerythritoxy-bridged cyclotriphosphazene derivatives: spiro鈥搒piro, spiro鈥揳nsa and ansa鈥揳nsa isomers. Dalton Trans 1302鈥?312
    30. Lao KYY, Hodgson DJ, Dawson B, Buist PH (2005) A micromethod for the stereochemical analysis of fatty acid desaturase-mediated sulfoxidation reactions. Bioorg Med Chem Lett 15:2799鈥?802
    31. Tremblay AE, Tan N, Whittle E, Hodgson DJ, Dawson B, Buist PH, Shanklin J (2010) Stereochemistry of 10-sulfoxidation catalyzed by a soluble 螖9 desaturase. Org Biomol Chem 8:1322鈥?328
    32. Tremblay AE, Lao KYY, Hodgson DJ, Dawson B, Buist PH (2009) Synthesis of chiral fluorine-tagged reference standards for the 19F NMR-based stereochemical analysis of sulfoxides at trace analytical levels. Bioorg Med Chem Lett 19:5146鈥?150
    33. De Moragas M, Cervello E, Port A, Jaime C, Virgili A, Ancian B (1998) Behavior of the 9-anthryl- / tert-butylcarbinol as a chiral solvating agent. Study of diastereochemical association by intermolecular NOE and molecular dynamics calculations. J Org Chem 63:8689鈥?695
    34. Gil J, Virgili A (1999) The first chiral solvating agent (CSA) without 1H NMR signals: the perdeuterio-2,2,2-trifluoro-1-(9-anthryl)ethanol. Preparation and chiral induction on protonated Pirkle alcohol. J Org Chem 64:7274鈥?276
    35. Perez-Trujillo M, Virgili A, Molins E (2004) Preparation, conformational analysis and behavior as chiral solvating agents of 9-anthrylpentafluorophenylmethanol enantiomers: study of the diastereomeric association. Tetrahedron Asymmetry 15:1615鈥?621
    36. Sanchez-Aris M, Estivill C, Virgili A (2003) Synthesis and structural study of the enantiomers of 伪, 伪鈥?bis(trifluoromethyl)-10,10鈥?(9,9鈥?bianthryl)dimethanol as a chiral solvating agent. Tetrahedron Asymmetry 14:3129鈥?135
    37. Munoz A, Virgili A (2002) Preparation and behavior of ( / R)- and ( / S)-2,2,2-trifluoro-1-(1-pyrenyl)ethanol as chiral solvating agents: study of the diastereomeric association by Job鈥檚 plots, intermolecular NOE and binding constants. Tetrahedron Asymmetry 13:1529鈥?534
    38. Benson SC, Cai P, Colon M, Haiza MA, Tokles M, Snyder JK (1988) Use of carboxylic acids as chiral solvating agents for the determination of optical purity of chiral amines by NMR spectroscopy. J Org Chem 53:5335鈥?341
    39. Buist PH, Marecak D (1995) ( / S)-伪-Methoxyphenyl acetic acid: a new NMR chiral shift reagent for the stereochemical analysis of sulfoxides. Tetrahedron Asymmetry 6:7鈥?0
    40. Haiza MA, Sanyal A, Snyder JK (1997) / O-Nitromandelic acid: a chiral solvating agent for the NMR determination of chiral diamine enantiomeric purity. Chirality 9:556鈥?62
    41. Cavalluzzi MM, Bruno C, Lentini G, Lovece A, Catalano A, Carocci A, Franchini C (2009) One-step synthesis of homochiral / O-aryl and / O-heteroaryl mandelic acids and their use as efficient 1H NMR chiral solvating agents. Tetrahedron Asymmetry 20:1984鈥?991
    42. Fauconnot L, Nugier-Chauvin C, Noiret N, Patin H (1997) Enantiomeric excess determination of some chiral sulfoxides by NMR: use of ( / S)-ibuprofen and ( / S)-naproxen as shift reagents. Tetrahedron Lett 38:7875鈥?878
    43. Demchuk OM, Swierczynska W, Michal Pietrusiewicz K, Woznica M, Wojcik D, Frelek J (2008) A convenient application of the NMR and CD methodologies for the determination of enantiomeric ratio and absolute configuration of chiral atropoisomeric phosphine oxides. Tetrahedron Asymmetry 19:2339鈥?345
    44. Chinchilla R, Foubelo F, Najera C, Yus M (1995) ( / R)- / O-Aryllactic acids: convenient chiral solvating agents for direct 1H NMR determination of the enantiomeric composition of amines and aminoalcohols. Tetrahedron Asymmetry 6:1877鈥?880
    45. Faigl F, Thurner A, Tarkanyi G, Kovari J, Mordini A (2002) Resolution and enantioselective rearrangements of amino group-containing oxiranyl ethers. Tetrahedron Asymmetry 13:59鈥?8
    46. Przybyl AK, Kubicki M (2011) Simple and highly efficient preparation and characterization of (鈭?-lupanine and (+)-sparteine. Tetrahedron 67:7787鈥?793
    47. Michalik M, Doebler C (1990) Determination of the chiral purity of amino alcohols by proton NMR spectroscopy. Tetrahedron 46:7739鈥?744
    48. Iuliano A, Bartalucci D, Uccello-Barretta G, Balzano F, Salvadori P (2001) 3,5-Dinitrobenzoylphenylglycine analogues bearing the 1,1鈥?binaphthalene moiety 鈥?synthesis, conformational study, and application as chiral solvating agents. Eur J Org Chem 2177鈥?184
    49. Ardej-Jakubisiak M, Kawecki R (2008) NMR method for determination of enantiomeric purity of sulfinimines. Tetrahedron Asymmetry 19:2645鈥?647
    50. Salsbury JS, Isbester PK (2005) Quantitative 1H NMR method for the routine spectroscopic determination of enantiomeric purity of active pharmaceutical ingredients fenfluramine, sertraline, and paroxetine. Magn Reson Chem 43:910鈥?17
    51. Redondo J, Capdevila A, Latorre I (2010) Use of ( / S)-BINOL as NMR chiral solvating agent for the enantiodiscrimination of omeprazole and its analogs. Chirality 22:472鈥?78
    52. Klika KD, Budovska M, Kutschy P (2010) Enantiodifferentiation of phytoalexin spirobrassinin derivatives using the chiral solvating agent ( / R)-(+)-1,1鈥?bi-2-naphthol in conjunction with molecular modeling. Tetrahedron Asymmetry 21:647鈥?58
    53. Toda F, Mori K, Okada J, Node M, Itoh A, Oomine K, Fuji K (1988) New chiral shift reagents, optically active 2,2鈥?dihydroxy-1,1鈥?binaphthyl and 1,6-bis( / o-chlorophenyl)-1,6-diphenyl-2,4-hexadiyne-1,6-diol. Chem Lett 131鈥?34
    54. Drabowicz J, Duddeck H (1989) Proton NMR spectral nonequivalence of sulfoxide enantiomers in the presence of 2,2鈥?dihydroxy-1,1鈥?binaphthyl. Sulfur Lett 10:37鈥?0
    55. Ma Q, Ma M, Tian H, Ye X, Xiao H, Chen L, Lei X (2012) A novel amine receptor based on the binol scaffold functions as a highly effective chiral shift reagent for carboxylic acids. Org Lett 14:5813鈥?815
    56. Omelanczuk J, Mikolajczyk M (1996) Chiral / t-butylphenylphosphinothioic acid: a useful chiral solvating agent for direct determination of enantiomeric purity of alcohols, thiols, amines, diols, amino alcohols, and related compounds. Tetrahedron Asymmetry 7:2687鈥?694
    57. Drabowicz J, Budzinski B, Mikolajczyk M (1992) Chiral / tert-butylphenylphosphinothioic acid: a new NMR solvating agent for determination of enantiomeric excesses of sulfoxides. Tetrahedron Asymmetry 3:1231鈥?234
    58. Gulea M, Kwiatkowska M, Lyzwa P, Legay R, Gaumont A-C, Kielbasinski P (2009) Michael addition to a chiral non-racemic 2-phosphono-2,3-didehydrothiolane / S-oxide. Tetrahedron Asymmetry 20:293鈥?97
    59. Mucha P, Mloston G, Jasinski M, Linden A, Heimgartner H (2008) A new approach to enantiomerically pure bis-imidazoles derived from / trans-1,2-diaminocyclohexane. Tetrahedron Asymmetry 19:1600鈥?607
    60. Szawkalo J, Zawadzka A, Wojtasiewicz K, Leniewski A, Drabowicz J, Czarnocki Z (2005) First enantioselective synthesis of the antitumour alkaloid (+)-crispine A and determination of its enantiomeric purity by 1H NMR. Tetrahedron Asymmetry 16:3619鈥?621
    61. Louafi F, Moreau J, Shahane S, Golhen S, Roisnel T, Sinbandhit S, Hurvois J-P (2011) Electrochemical synthesis and chemistry of chiral 1-cyanotetrahydroisoquinolines. An approach to the asymmetric syntheses of the alkaloid (鈭?-crispine A and its natural (+)-antipode. J Org Chem 76:9720鈥?732
    62. Czarnocki SJ, Wojtasiewicz K, Jozwiak AP, Maurin JK, Czarnocki Z, Drabowicz J (2008) Enantioselective synthesis of (+)-trypargine and (+)-crispine E. Tetrahedron 64:3176鈥?182
    63. Maier NM, Zoltewicz JA (1997) Dynamic equilibration of diastereomeric salts of atropisomers. Proton NMR spectra of 1,8-di(3鈥?pyridyl)naphthalene in the presence of / R-camphorsulfonic acid. Tetrahedron 53:465鈥?68
    64. Satishkumar S, Periasamy M (2009) Chiral recognition of carboxylic acids by Troeger鈥檚 base derivatives. Tetrahedron Asymmetry 20:2257鈥?262
    65. Deshmukh M, Dunach E, Juge S, Kagan HB (1984) A convenient family of chiral shift reagents for measurement of enantiomeric excesses of sulfoxides. Tetrahedron Lett 25:3467鈥?470
    66. Pakulski Z, Demchuk OM, Kwiatosz R, Osinski PW, Swierczynska W, Pietrusiewicz KM (2003) The classical Kagan鈥檚 amides are still practical NMR chiral shift reagents: determination of enantiomeric purity of P-chirogenic phospholene oxides. Tetrahedron Asymmetry 14:1459鈥?462
    67. Hirose T, Naito K, Shitara H, Nohira H, Baldwin BW (2001) 1H NMR study of chiral recognition of amines by chiral Kemp鈥檚 acid diamide. Tetrahedron Asymmetry 12:375鈥?80
    68. Hirose T, Naito K, Nakahara M, Shitara H, Aoki Y, Nohira H, Baldwin BW (2002) New chiral Kemp鈥檚 acid diamides for chiral amine recognition by 1H NMR. J Incl Phenom Macrocycl Chem 43:87鈥?3
    69. Bergmann H, Grosch B, Sitterberg S, Bach T (2004) An enantiomerically pure 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one as 1H NMR shift reagent for the ee determination of chiral lactams, quinolones, and oxazolidinones. J Org Chem 69:970鈥?73
    70. Yang X, Wang G, Zhong C, Wu X, Fu E (2006) Novel NMR chiral solvating agents derived from (1 / R,2 / R)-diaminocyclohexane: synthesis and enantiodiscrimination for chiral carboxylic acids. Tetrahedron Asymmetry 17:916鈥?21
    71. Luo Z, Zhong C, Wu X, Fu E (2008) Amphiphilic chiral receptor as efficient chiral solvating agent for both lipophilic and hydrophilic carboxylic acids. Tetrahedron Lett 49:3385鈥?390
    72. Luo Z, Li B, Fang X, Hu K, Wu X, Fu E (2007) Novel chiral solvating agents derived from natural amino acid: enantiodiscrimination for chiral 伪-arylalkylamines. Tetrahedron Lett 48:1753鈥?756
    73. Naziroglu HN, Durmaz M, Bozkurt S, Sirit A (2011) Application of l -proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids. Chirality 23:463鈥?71
    74. Wagger J, Grdadolnik SG, Groselj U, Meden A, Stanovnik B, Svete J (2007) Chiral solvating properties of ( / S)-1-benzyl-6-methylpiperazine-2,5-dione. Tetrahedron Asymmetry 18:464鈥?75
    75. Malavasic C, Wagger J, Stanovnik B, Svete J (2008) ( / S)- / N-Benzyl-3(6)-methylpiperazine-2,5-diones as chiral solvating agents for / N-acylamino acid esters. Tetrahedron Asymmetry 19:1557鈥?567
    76. Malavasic C, Stanovnik B, Wagger J, Svete J (2011) The effect of substituents on the chiral solvating properties of ( / S)-1,6-dialkylpiperazine-2,5-diones. Tetrahedron Asymmetry 22:1364鈥?371
    77. Kim S, Choi K (2011) A practical solvating agent for the chiral NMR discrimination of carboxylic acids. Eur J Org Chem 4747鈥?750
    78. Bozkurt S, Durmaz M, Naziroglu HN, Yilmaz M, Sirit A (2011) Amino alcohol based chiral solvating agents: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron Asymmetry 22:541鈥?49
    79. Ma F, Ai L, Shen X, Zhang C (2007) New macrocyclic compound as chiral shift reagent for carboxylic acids. Org Lett 9:125鈥?27
    80. Wang W, Ma F, Shen X, Zhang C (2007) New chiral auxiliaries derived from ( / S)-伪-phenylethylamine as chiral solvating agents for carboxylic acids. Tetrahedron Asymmetry 18:832鈥?37
    81. Wang W, Shen X, Ma F, Li Z, Zhang C (2008) Chiral amino alcohols derived from natural amino acids as chiral solvating agents for carboxylic acids. Tetrahedron Asymmetry 19:1193鈥?199
    82. Li Y, Raushel FM (2007) Differentiation of chiral phosphorus enantiomers by 31P and 1H NMR spectroscopy using amino acid derivatives as chemical solvating agents. Tetrahedron Asymmetry 18:1391鈥?397
    83. Hernandez-Rodriguez M, Juaristi E (2007) Structurally simple chiral thioureas as chiral solvating agents in the enantiodiscrimination of 伪-hydroxy and 伪-amino carboxylic acids. Tetrahedron 63:7673鈥?678
    84. Lacour J (2010) Chiral hexacoordinated phosphates: from pioneering studies to modern uses in stereochemistry. C R Chim 13:985鈥?97
    85. Bergman SD, Frantz R, Gut D, Kol M, Lacour J (2006) Effective chiral recognition among ions in polar media. Chem Commun 850鈥?52
    86. Michon C, Goncalves-Farbos M-H, Lacour J (2009) NMR enantiodifferentiation of quaternary ammonium salts of Troeger base. Chirality 21:809鈥?17
    87. Lacour J, Goujon-Ginglinger C, Troche-Haldimann S, Jordry JJ (2000) Efficient enantioselective extraction of tris(diimine)ruthenium(II) complexes by chiral, lipophilic TRISPHAT anions. Angew Chem Int Ed 39:3695鈥?697
    88. Payet E, Dimitrov-Raytchev P, Chatelet B, Guy L, Grass S, Lacour J, Dutasta J-P, Martinez A (2012) Absolute configuration and enantiodifferentiation of a hemicryptophane incorporating an azaphosphatrane moiety. Chirality 24:1077鈥?081
    89. Barry NPE, Austeri M, Lacour J, Therrien B (2009) Highly efficient NMR enantiodiscrimination of chiral octanuclear metalla-boxes in polar solvent. Organometallics 28:4894鈥?897
    90. Perollier C, Bernardinelli G, Lacour J (2008) Sugar derived hexacoordinated phosphates: chiral anionic auxiliaries with general asymmetric efficiency. Chirality 20:313鈥?24
    91. Llewellyn DB, Arndtsen BA (2003) The use of a chiral borate counteranion as a 1H NMR shift reagent for cationic copper(I) complexes. Can J Chem 81:1280鈥?284
    92. Loewer Y, Weiss C, Biju AT, Froehlich R, Glorius F (2011) Synthesis and application of a chiral diborate. J Org Chem 76:2324鈥?327
    93. Moon LS, Jolly RS, Kasetti Y, Bharatam PV (2009) A new chiral shift reagent for the determination of enantiomeric excess and absolute configuration in cyanohydrins. Chem Commun 1067鈥?069
    94. Moon LS, Pal M, Kasetti Y, Bharatam PV, Jolly RS (2010) Chiral solvating agents for cyanohydrins and carboxylic acids. J Org Chem 75:5487鈥?498
    95. Pirkle WH, Pochapsky TC (1987) Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes. J Am Chem Soc 109:5975鈥?982
    96. Salvadori P, Rosini C, Pini D, Bertucci C, Altemura P, Uccello-Barretta G, Raffaelli A (1987) A novel application of Cinchona alkaloids as chiral auxiliaries: preparation and use of a new family of chiral stationary phases for the chromatographic resolution of racemates. Tetrahedron 43:4969鈥?978
    97. Uccello-Barretta G, Rosini C, Pini D, Salvadori P (1990) A spectroscopic study of the interaction of (d )- and (l )- / N-(3,5-dinitrobenzoyl)valine methyl ester with / n-butylamide of ( / S)-2-[(phenylcarbamoyl)oxy]propionic acid: direct evidence for a chromatographic chiral recognition rationale. J Am Chem Soc 112:2707鈥?710
    98. Pirkle WH, Tsipouras A (1985) 3,5-Dinitrobenzoyl amino acid esters. Broadly applicable chiral solvating agents for NMR determination of enantiomeric purity. Tetrahedron Lett 26:2989鈥?992
    99. Rosini C, Uccello-Barretta G, Pini D, Abete C, Salvadori P (1988) Quinine: an inexpensive chiral solvating agent for the determination of enantiomeric composition of binaphthyl derivatives and alkylarylcarbinols by NMR spectroscopy. J Org Chem 53:4579鈥?581
    100. Salvadori P, Pini D, Rosini C, Bertucci C, Uccello-Barretta G (1992) Chiral discriminations with Cinchona alkaloids. Chirality 4:43鈥?9
    101. Uccello-Barretta G, Pini D, Mastantuono A, Salvadori P (1995) Direct NMR assay of enantiomeric purity of chiral 尾-hydroxy esters by using quinine as chiral solvating agent. Tetrahedron Asymmetry 6:1965鈥?972
    102. Maly A, Lejczak B, Kafarski P (2003) Quinine as chiral discriminator for determination of enantiomeric excess of diethyl 1,2-dihydroxyalkanephosphonates. Tetrahedron Asymmetry 14:1019鈥?024
    103. Uccello-Barretta G, Bardoni S, Balzano F, Salvadori P (2001) Versatile chiral auxiliaries for NMR spectroscopy based on carbamoyl derivatives of dihydroquinine. Tetrahedron Asymmetry 12:2019鈥?023
    104. Uccello-Barretta G, Mirabella F, Balzano F, Salvadori P (2003) C11 versus C9 carbamoylation of quinine: a new class of versatile polyfunctional chiral solvating agents. Tetrahedron Asymmetry 14:1511鈥?516
    105. Pini D, Uccello-Barretta G, Rosini C, Salvadori P (1991) / N-( / n-Butylamide) of ( / S)-2-(phenylcarbamoyloxy)propionic acid: a new chiral solvating agent, derived from l -lactic acid, for the enantiomeric purity determination of derivatized amino acids. Chirality 3:174鈥?76
    106. Heo KS, Hyun MH, Cho YJ, Ryoo JJ (2011) Determination of optical purity of 3,5-dimethoxybenzoyl-leucine diethylamide by chiral chromatography and 1H and 13C NMR spectroscopy. Chirality 23:281鈥?86
    107. Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57:3854鈥?860
    108. Pirkle WH, Welch CJ (1992) An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J Liq Chromatogr 15:1947鈥?955
    109. Iwaniuk DP, Wolf C (2010) A versatile and practical solvating agent for enantioselective recognition and NMR analysis of protected amines. J Org Chem 75:6724鈥?727
    110. Palomino-Schaetzlein M, Virgili A, Gil S, Jaime C (2006) Di-( / R, / R)-1-[10-(1-hydroxy-2,2,2-trifluoroethyl)-9-anthryl]-2,2,2-trifluoroethyl muconate: a highly chiral cavity for enantiodiscrimination by NMR. J Org Chem 71:8114鈥?120
    111. Gil S, Palomino-Schaetzlein M, Burusco KK, Jaime C, Virgili A (2010) Molecular tweezers for enantiodiscrimination in NMR: di-( / R, / R)-1-[10-(1-hydroxy-2,2,2-trifluoroethyl)-9-anthryl]-2,2,2-trifluoroethyl benzenedicarboxylates. Chirality 22:548鈥?56
    112. Pena C, Gonzalez-Sabin J, Alfonso I, Rebolledo F, Gotor V (2007) New pincer-like receptor derived from / trans-cyclopentane-1,2-diamine as a chiral shift reagent for carboxylic acids. Tetrahedron Asymmetry 18:1981鈥?985
    113. Pena C, Gonzalez-Sabin J, Alfonso I, Rebolledo F, Gotor V (2008) Cycloalkane-1,2-diamine derivatives as chiral solvating agents. Study of the structural variables controlling the NMR enantiodiscrimination of chiral carboxylic acids. Tetrahedron 64:7709鈥?717
    114. Liu L, Ye M, Hu X, Yu X, Zhang L, Lei X (2011) Chiral solvating agents for carboxylic acids based on the salen moiety. Tetrahedron Asymmetry 22:1667鈥?671
    115. Altava B, Burguete MI, Carbo N, Escorihuela J, Luis SV (2010) Chiral bis(amino amides) as chiral solvating agents for enantiomeric excess determination of 伪-hydroxy and arylpropionic acids. Tetrahedron Asymmetry 21:982鈥?89
    116. Legouin B, Gayral M, Uriac P, Tomasi S, van de Weghe P (2010) Recognition of enantiomers with chiral molecular tweezers derived from (+)- or (鈭?-usnic acid. Tetrahedron Asymmetry 21:1307鈥?310
    117. Ema T, Ouchi N, Doi T, Korenaga T, Sakai T (2005) Highly sensitive chiral shift reagent bearing two zinc porphyrins. Org Lett 7:3985鈥?988
    118. Williams T, Pitcher RG, Bommer P, Gutzwiller J, Uskokovic M (1969) Diastereomeric solute鈥搒olute interactions of enantiomers in achiral solvents. Nonequivalence of the nuclear magnetic resonance spectra of racemic and optically active dihydroquinine. J Am Chem Soc 91:1871鈥?872
    119. Uccello-Barretta G, Vanni L, Balzano F (2009) NMR enantiodiscrimination phenomena by quinine C9-carbamates. Eur J Org Chem 860鈥?69
    120. Uccello-Barretta G, Balzano F, Salvadori P (2005) Rationalization of the multireceptorial character of chiral solvating agents based on quinine and its derivatives: overview of selected NMR investigations. Chirality 17:S243鈥揝248
    121. Uccello-Barretta G, Vanni L, Berni MG, Balzano F (2011) NMR enantiodiscrimination by pentafluorophenylcarbamoyl derivatives of quinine: C10 versus C9 derivatization. Chirality 23:417鈥?23
    122. Abid M, Toeroek B (2005) Cinchona alkaloid induced chiral discrimination for the determination of the enantiomeric composition of 伪-trifluoromethylated-hydroxyl compounds by 19F NMR spectroscopy. Tetrahedron Asymmetry 16:1547鈥?555
    123. Zymanczyk-Duda E, Skwarczynski M, Lejczak B, Kafarski P (1996) Accurate assay of enantiopurity of 1-hydroxy- and 2-hydroxyalkylphosphonate esters. Tetrahedron Asymmetry 7:1277鈥?280
    124. Rudzinska E, Berlicki L, Kafarski P, Lammerhofer M, Mucha A (2009) Cinchona alkaloids as privileged chiral solvating agents for the enantiodiscrimination of / N-protected aminoalkanephosphonates 鈥?a comparative NMR study. Tetrahedron Asymmetry 20:2709鈥?714
    125. Gorecki L, Berlicki L, Mucha A, Kafarski P, Slepokura K, Rudzinska-Szostak E (2012) Phosphorylation as a method of tuning the enantiodiscrimination potency of quinine 鈥?an NMR study. Chirality 24:318鈥?28
    126. Faigl F, Vas-Feldhoffer B, Kubinyi M, Pal K, Tarkanyi G, Czugler M (2009) Efficient synthesis of optically active 1-(2-carboxymethyl-6-ethylphenyl)-1H-pyrrole-2-carboxylic acid: a novel atropisomeric 1-arylpyrrole derivative. Tetrahedron Asymmetry 20:98鈥?03
    127. Kwon C, Yoo KM, Jung S (2009) Chiral separation and discrimination of catechin by sinorhizobial octasaccharides in capillary electrophoresis and 13C NMR spectroscopy. Carbohydr Res 344:1347鈥?351
    128. D鈥橝cquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism. Adv Chromatogr 46:109鈥?73
    129. Uccello-Barretta G, Vanni L, Balzano F (2010) Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. J Chromatogr A 1217:928鈥?40
    130. Chankvetadze B, Blaschke G (1999) Selector-selectand interactions in chiral capillary electrophoresis. Electrophoresis 20:2592鈥?604
    131. Chankvetadze B, Burjanadze N, Maynard DM, Bergander K, Bergenthal D, Blaschke G (2002) Comparative enantioseparations with native 尾-cyclodextrin and heptakis-(2- / O-methyl-3,6-di- / O-sulfo)-尾-cyclodextrin in capillary electrophoresis. Electrophoresis 23:3027鈥?034
    132. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337鈥?47
    133. Vega ED, Lomsadze K, Chankvetadze L, Salgado A, Scriba GKE, Calvo E, Lopez JA, Crego AL, Marina ML, Chankvetadze B (2011) Separation of enantiomers of ephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE, NMR and high resolution MS studies. Electrophoresis 32:2640鈥?647
    134. Lomsadze K, Vega ED, Salgado A, Crego AL, Scriba GKE, Marina ML, Chankvetadze B (2012) Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE and NMR studies. Electrophoresis 33:1637鈥?647
    135. Schurig V (2012) Separation of enantiomers. In: Poole CF (ed) Gas chromatography. Elsevier, Oxford, pp 495鈥?17
    136. Schurig V (2011) Gas chromatographic enantioseparation of derivatized 伪-amino acids on chiral stationary phases 鈥?past and present. J Chromatogr B 879:3122鈥?140
    137. Schurig V (2010) Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharm Fr 68:82鈥?8
    138. Wistuba D, Schurig V (2009) The separation of enantiomers on modified cyclodextrins by capillary electrochromatography (CEC). LC-GC Eur 22:60, 62鈥?4, 66鈥?9
    139. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825鈥?845
    140. Dodziuk H (ed) (2008) Cyclodextrins and their complexes. Wiley-VCH, Weinheim
    141. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019鈥?032
    142. Perez-Trujillo M, Lindon JC, Parella T, Keun HC, Nicholson JK, Athersuch TJ (2012) Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with 尾-cyclodextrin. Anal Chem 84:2868鈥?874
    143. Dodziuk H, Kozminski W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90鈥?05
    144. Schneider H-J, Hacket F, Ruediger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755鈥?785
    145. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743鈥?753
    146. Uccello-Barretta G, Balzano F, Cuzzola A, Menicagli R, Salvadori P (2000) NMR detection of the conformational distortion induced in cyclodextrins by introduction of alkyl or aromatic substituents. Eur J Org Chem 449鈥?53
    147. Uccello-Barretta G, Sicoli G, Balzano F, Salvadori P (2003) A conformational model of per- / O-acetyl-cyclomaltoheptaose (-尾-cyclodextrin) in solution: detection of partial inversion of glucopyranose units by NMR spectroscopy. Carbohydr Res 338:1103鈥?107
    148. Uccello-Barretta G, Sicoli G, Balzano F, Salvadori P (2005) NMR spectroscopy: a powerful tool for detecting the conformational features of symmetrical per-substituted mixed cyclomaltoheptaoses (尾-cyclodextrins). Carbohydr Res 340:271鈥?81
    149. Casy AF, Mercer AD (1988) Application of cyclodextrins to chiral analysis by proton NMR spectroscopy. Magn Reson Chem 26:765鈥?74
    150. Greatbanks D, Pickford R (1987) Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements. Magn Reson Chem 25:208鈥?15
    151. Blazewska KM, Ni F, Haiges R, Kashemirov BA, Coxon FP, Stewart CA, Baron R, Rogers MJ, Seabra MC, Ebetino FH, McKenna CE (2011) Synthesis, stereochemistry and SAR of a series of minodronate analogues as RGGT inhibitors. Eur J Med Chem 46:4820鈥?826
    152. Redondo J, Capdevila A, Latorre I, Bertran J (2012) Host鈥揼uest complexation of omeprazole, pantoprazole and rabeprazole sodium salts with cyclodextrins: an NMR study on solution structures and enantiodiscrimination power. J Incl Phenom Macrocycl Chem 73:225鈥?36
    153. Esturau N, Espinosa JF (2006) Optimization of diffusion-filtered NMR experiments for selective suppression of residual nondeuterated solvent and water signals from 1H NMR spectra of organic compounds. J Org Chem 71:4103鈥?110
    154. Lee Y-J, Choi S, Lee J, Nguyen NVT, Lee K, Kang JS, Mar W, Kim KH (2012) Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy. Arch Pharm Res 35:671鈥?81
    155. Molaabasi F, Talebpour Z (2011) Enantiomeric discrimination and quantification of the chiral organophosphorus pesticide fenamiphos in aqueous samples by a novel and selective 31P nuclear magnetic resonance spectroscopic method using cyclodextrins as chiral selector. J Agric Food Chem 59:803鈥?08
    156. Smith KJ, Wilcox JD, Mirick GE, Wacker LS, Ryan NS, Vensel DA, Readling R, Domush HL, Amonoo EP, Shariff SS, Wenzel TJ (2003) Calix[4]arene, calix[4]resorcarene, and cyclodextrin derivatives and their lanthanide complexes as chiral NMR shift reagents. Chirality 15:S150鈥揝158
    157. Wenzel TJ, Amonoo EP, Shariff SS, Aniagyei SE (2003) Sulfated and carboxymethylated cyclodextrins and their lanthanide complexes as chiral NMR discriminating agents. Tetrahedron Asymmetry 14:3099鈥?104
    158. Dignam CF, Randall LA, Blacken RD, Cunningham PR, Lester S-KG, Brown MJ, French SC, Aniagyei SE, Wenzel TJ (2006) Carboxymethylated cyclodextrin derivatives as chiral NMR discriminating agents. Tetrahedron Asymmetry 17:1199鈥?208
    159. Provencher KA, Weber MA, Randall LA, Cunningham PR, Dignam CF, Wenzel TJ (2010) Carboxymethylated cyclodextrins and their complexes with Pr(III) and Yb(III) as water-soluble chiral NMR solvating agents for cationic compounds. Chirality 22:336鈥?46
    160. Provencher KA, Wenzel TJ (2008) Carboxymethylated cyclodextrins and their paramagnetic lanthanide complexes as water-soluble chiral NMR solvating agents. Tetrahedron Asymmetry 19:1797鈥?803
    161. Chisholm CD, Wenzel TJ (2011) Enantiomeric discrimination of aromatic-containing anionic substrates using cationic cyclodextrins. Tetrahedron Asymmetry 22:62鈥?8
    162. Rekharsky M, Yamamura H, Kawai M, Inoue Y (2001) Critical difference in chiral recognition of / N-Cbz-d /l -aspartic and -glutamic acids by mono- and bis(trimethylammonio)-尾-cyclodextrins. J Am Chem Soc 123:5360鈥?361
    163. Park KK, Lim HS, Park JW (1999) Chiral discrimination of phenylacetic acid derivatives by xylylenediamine-modified 尾-cyclodextrins. Bull Korean Chem Soc 20:211鈥?13
    164. Sun P, MacDonnell FM, Armstrong DW (2009) Enantioselective host鈥揼uest complexation of Ru(II) trisdiimine complexes using neutral and anionic derivatized cyclodextrins. Inorg Chim Acta 362:3073鈥?078
    165. Koehler JEH, Hohla M, Richters M, K枚nig WA (1992) Cyclodextrin derivatives as chiral selectors. Investigation of interaction with ( / R, / S)-methyl 2-chloropropionate by enantioselective gas chromatography, NMR spectroscopy and molecular dynamics simulation. Angew Chem Int Ed Engl 31:319鈥?20
    166. Schmidt R, Roeder M, Oeckler O, Simon A, Schurig V (2000) Separation and absolute configuration of the enantiomers of a degradation product of the new inhalation anesthetic sevoflurane. Chirality 12:751鈥?55
    167. Sicoli G, Jiang Z, Jicsinsky L, Schurig V (2005) Modified linear dextrins (鈥渁cyclodextrins鈥? as new chiral selectors for the gas-chromatographic separation of enantiomers. Angew Chem Int Ed 44:4092鈥?095
    168. Uccello-Barretta G, Sicoli G, Balzano F, Schurig V, Salvadori P (2006) Highly efficient NMR enantio-discrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane, a chiral degradation product of sevoflurane, by heptakis(2,3-di- / O-acetyl-6- / O- / tert-butyldimethylsilyl)-尾-cyclodextrin. Tetrahedron Asymmetry 17:2504鈥?510
    169. Uccello-Barretta G, Balzano F, Pertici F, Jicsinszky L, Sicoli G, Schurig V (2008) External vs. internal interactions in the enantio-discrimination of fluorinated 伪-amino acid derivatives by heptakis[2,3-di- / O-acetyl-6- / O-( / tert-butyldimethylsilyl)]-尾-cyclodextrin, a powerful chiral solvating agent for NMR spectroscopy. Eur J Org Chem 1855鈥?863
    170. Uccello-Barretta G, Balzano F, Caporusso AM, Iodice A, Salvadori P (1995) Permethylated 尾-cyclodextrin as chiral solvating agent for the NMR assignment of the absolute configuration of chiral trisubstituted allenes. J Org Chem 60:2227鈥?231
    171. Uccello-Barretta G, Balzano F, Caporusso AM, Salvadori P (1994) Direct determination of the enantiomeric purity of chiral trisubstituted allenes by using permethylated cyclodextrin as a chiral solvating agent. J Org Chem 59:836鈥?39
    172. Uccello-Barretta G, Balzano F, Menicagli R, Salvadori P (1996) NMR chiral analysis of aromatic hydrocarbons by using permethylated 尾-cyclodextrin as chiral solvating agent. J Org Chem 61:363鈥?65
    173. Uccello-Baretta G, Cuzzola A, Balzano F, Menicagli R, Salvadori P (1998) Benzoylated and benzylated cyclodextrins. A new class of chiral solvating agents for chiral recognition of 3,5-dinitrophenyl derivatives by 1H-NMR spectroscopy. Eur J Org Chem 2009鈥?012
    174. Uccello-Barretta G, Cuzzola A, Balzano F, Menicagli R, Iuliano A, Salvadori P (1997) A new stereochemical model from NMR for benzoylated cyclodextrins, promising new chiral solvating agents for the chiral analysis of 3,5-dinitrophenyl derivatives. J Org Chem 62:827鈥?35
    175. Uccello-Barretta G, Ferri L, Balzano F, Salvadori P (2003) Partially versus exhaustively carbamoylated cyclodextrins: NMR investigation on enantiodiscriminating capabilities in solution. Eur J Org Chem 1741鈥?748
    176. Yashima E, Yamada M, Yamamoto C, Nakashima M, Okamoto Y (1997) Chromatographic enantio-separation and chiral discrimination in NMR by trisphenylcarbamate derivatives of cellulose, amylose, oligosaccharides, and cyclodextrins. Enantiomer 2:225鈥?40
    177. Kubota T, Yamamoto C, Okamoto Y (2002) Chromatographic enantioseparation by cycloalkylcarbamate derivatives of cellulose and amylose. Chirality 14:372鈥?76
    178. Uccello-Barretta G, Balzano F, Sicoli G, Scarselli A, Salvadori P (2005) NMR enantio-discrimination of polar and apolar substrates by multifunctional cyclodextrins. Eur J Org Chem 5349鈥?355
    179. Boger J, Corcoran RJ, Lehn JM (1978) Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of 伪- and 尾-cyclodextrins. Helv Chim Acta 61:2190鈥?218
    180. Ema T, Ura N, Eguchi K, Ise Y, Sakai T (2011) Chiral porphyrin dimer with a macrocyclic cavity for intercalation of aromatic guests. Chem Commun 47:6090鈥?092
    181. Ema T (2012) Synthetic macrocyclic receptors in chiral analysis and separation. J Incl Phenom Macrocycl Chem 74:41鈥?5
    182. Shirakawa S, Moriyama A, Shimizu S (2007) Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Org Lett 9:3117鈥?119
    183. Shirakawa S, Moriyama A, Shimizu S (2008) Synthesis, optical resolution and enantiomeric recognition ability of novel, inherently chiral calix[4]arenes: trial application to asymmetric reactions as organocatalysts. Eur J Org Chem 5957鈥?964
    184. Xia Y-X, Zhou H-H, Shi J, Li S-Z, Zhang M, Luo J, Xiang G-Y (2012) An inherently chiral calix[4]crown carboxylic acid in the 1,2-alternate conformation. J Incl Phenom Macrocycl Chem 74:277鈥?84
    185. Uccello-Barretta G, Berni M-G, Balzano F (2007) Enantiodiscrimination by inclusion phenomena inside a bis(ethyl lactate) / p- / tert-butylcalix[4]arene derivative. Tetrahedron Asymmetry 18:2565鈥?572
    186. Durmaz M, Yilmaz M, Sirit A (2011) Synthesis of chiral calix[4]arenes bearing aminonaphthol moieties and their use in the enantiomeric recognition of carboxylic acids. Org Biomol Chem 9:571鈥?80
    187. Ben Sdira S, Felix CP, Giudicelli M-BA, Seigle-Ferrand PF, Perrin M, Lamartine RJ (2003) Synthesis and structure of lower rim C-linked / N-tosyl peptidocalix[4]arenes. J Org Chem 68:6632鈥?638
    188. Ben Sdira S, Baudry R, Felix CP, Giudicelli M-BA, Lamartine RJ (2004) Synthesis and structure of lower rim C-linked tetra- / N-tosyl peptidocalix[4]arenes. Tetrahedron Lett 45:7801鈥?804
    189. Bois J, Bonnamour I, Duchamp C, Parrot-Lopez H, Darbost U, Felix C (2009) Enantioselective recognition of amino acids by chiral peptido-calix[4]arenes and thiacalix[4]arenes. New J Chem 33:2128鈥?135
    190. Lhotak P (2004) Chemistry of thiacalixarenes. Eur J Org Chem 1675鈥?692
    191. Wenzel TJ (2013) Chiral derivatizing agents, macrocycles, metal complexes, and liquid crystals for enantiomer differentiation in NMR spectroscopy. Top Curr Chem. doi:10.1007/128_2013_433
    192. Pham NH, Wenzel TJ (2012) A water-soluble calix[4]resorcinarene with l -pipecolinic acid groups as a chiral NMR solvating agent. Chirality 24:193鈥?00
    193. Pham NH, Wenzel TJ (2011) A water-soluble calix[4]resorcinarene with 伪-methyl-l -prolinylmethyl groups as a chiral NMR solvating agent. J Org Chem 76:986鈥?89
    194. O鈥橣arrell CM, Chudomel JM, Collins JM, Dignam CF, Wenzel TJ (2008) Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents. J Org Chem 73:2843鈥?851
    195. O鈥橣arrell CM, Hagan KA, Wenzel TJ (2009) Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for bicyclic aromatic compounds. Chirality 21:911鈥?21
    196. Pham NH, Wenzel TJ (2011) A sulfonated calix[4]resorcinarene with 伪-methyl-l -prolinylmethyl groups as a water-soluble chiral NMR solvating agent. Tetrahedron Asymmetry 22:641鈥?47
    197. Pham NH, Wenzel TJ (2011) A sulfonated calix[4]resorcinarene with l -pipecolinic acid groups as a water-soluble chiral NMR solvating agent. Tetrahedron Asymmetry 22:1574鈥?580
    198. Hagan KA, O鈥橣arrell CM, Wenzel TJ (2009) Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents for phenyl- and pyridyl-containing compounds. Eur J Org Chem 4825鈥?832
    199. O鈥橣arrell CM, Wenzel TJ (2008) Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for phenyl-containing compounds. Tetrahedron Asymmetry 19:1790鈥?796
    200. Wenzel TJ, Rollo RD, Clark RL (2012) Chiral discrimination of aliphatic amines and amino alcohols using NMR spectroscopy. Magn Reson Chem 50:261鈥?65
    201. Li N, Yang F, Stock HA, Dearden DV, Lamb JD, Harrison RG (2012) Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition. Org Biomol Chem 10:7392鈥?401
    202. Amato ME, Ballistreri FP, D鈥橝gata S, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetto GT (2011) Enantioselective molecular recognition of chiral organic ammonium ions and amino acids using cavitand-salen-based receptors. Eur J Org Chem 5674鈥?680
    203. Ema T, Tanida D, Sakai T (2006) Versatile and practical chiral shift reagent with hydrogen-bond donor/acceptor sites in a macrocyclic cavity. Org Lett 8:3773鈥?775
    204. Ema T, Tanida D, Sakai T (2007) Versatile and practical macrocyclic reagent with multiple hydrogen-bonding sites for chiral discrimination in NMR. J Am Chem Soc 129:10591鈥?0596
    205. Ema T, Tanida D, Hamada K, Sakai T (2008) Tuning the chiral cavity of macrocyclic receptor for chiral recognition and discrimination. J Org Chem 73:9129鈥?132
    206. Ema T, Tanida D, Sugita K, Sakai T, Miyazawa K, Ohnishi A (2008) Chiral selector with multiple hydrogen-bonding sites in a macrocyclic cavity. Org Lett 10:2365鈥?368
    207. Ema T, Ura N, Eguchi K, Sakai T (2012) Molecular recognition of chiral diporphyrin receptor with a macrocyclic cavity for intercalation of aromatic compounds. Bull Chem Soc Jpn 85:101鈥?09
    208. Gasparrini F, Misiti D, Pierini M, Villani C (2002) A chiral A2B2 macrocyclic minireceptor with extreme enantioselectivity. Org Lett 4:3993鈥?996
    209. Uccello-Barretta G, Balzano F, Martinelli J, Berni M-G, Villani C, Gasparrini F (2005) NMR enantiodiscrimination by cyclic tetraamidic chiral solvating agents. Tetrahedron Asymmetry 16:3746鈥?751
    210. Uccello-Barretta G, Balzano F, Martinelli J, Gasparrini F, Pierini M, Villani C (2011) NMR and computational investigations of the chiral discrimination processes involving a cyclic tetraamidic chiral selector. Eur J Org Chem 3738鈥?747
    211. Tanaka K, Nakai Y, Takahashi H (2011) Efficient NMR chiral discrimination of carboxylic acids using rhombamine macrocycles as chiral shift reagent. Tetrahedron Asymmetry 22:178鈥?84
    212. Periasamy M, Dalai M, Padmaja M (2010) Chiral / trans-1,2-diaminocyclohexane derivatives as chiral solvating agents for carboxylic acids. J Chem Sci 122:561鈥?69
    213. Gualandi A, Grilli S, Savoia D, Kwit M, Gawronski J (2011) C-Hexaphenyl-substituted trianglamine as a chiral solvating agent for carboxylic acids. Org Biomol Chem 9:4234鈥?241
    214. Ma F, Shen X, Ming X, Wang J, Ou-Yang J, Zhang C (2008) The novel macrocyclic compounds as chiral solvating agents for determination of enantiomeric excess of carboxylic acids. Tetrahedron Asymmetry 19:1576鈥?586
    215. Ma F, Shen X, Ou-Yang J, Deng Z, Zhang C (2008) Macrocyclic compounds as chiral solvating agents for phosphinic, phosphonic, and phosphoric acids. Tetrahedron Asymmetry 19:31鈥?7
    216. Tanaka K, Fukuda N, Fujiwara T (2007) Trianglamine as a new chiral shift reagent for secondary alcohols. Tetrahedron Asymmetry 18:2657鈥?661
    217. Tanaka K, Fukuda N (2009) 鈥淐alixarene-like鈥?chiral amine macrocycles as novel chiral shift reagents for carboxylic acids. Tetrahedron Asymmetry 20:111鈥?14
    218. Quinn TP, Atwood PD, Tanski JM, Moore TF, Folmer-Andersen JF (2011) Aza-crown macrocycles as chiral solvating agents for mandelic acid derivatives. J Org Chem 76:10020鈥?0030
    219. Carrillo R, Lopez-Rodriguez M, Martin VS, Martin T (2009) Quantification of a CH-蟺 interaction responsible for chiral discrimination and evaluation of its contribution to enantioselectivity. Angew Chem Int Ed 48:7803鈥?808
    220. Busto E, Gonzalez-Alvarez A, Gotor-Fernandez V, Alfonso I, Gotor V (2010) Optically active macrocyclic hexaazapyridinophanes decorated at the periphery: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron 66:6070鈥?077
    221. Gonzalez-Alvarez A, Alfonso I, Gotor V (2006) An azamacrocyclic receptor as efficient polytopic chiral solvating agent for carboxylic acids. Tetrahedron Lett 47:6397鈥?400
    222. Gospodarowicz K, Holynska M, Paluch M, Lisowski J (2012) Novel chiral hexaazamacrocycles for the enantiodiscrimination of carboxylic acids. Tetrahedron 68:9930鈥?935
    223. Wenzel TJ, Thurston JE (2000) Enantiomeric discrimination in the NMR spectra of underivatized amino acids and 伪-methyl amino acids using (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Tetrahedron Lett 41:3769鈥?772
    224. Wenzel TJ, Thurston JE (2000) (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic acid and its ytterbium(III) complex as chiral NMR discriminating agents. J Org Chem 65:1243鈥?248
    225. Machida Y, Kagawa M, Nishi H (2003) Nuclear magnetic resonance studies for the chiral recognition of (+)-( / R)-18-crown-6-tetracarboxylic acid to amino compounds. J Pharm Biomed Anal 30:1929鈥?942
    226. Lee W, Bang E, Baek C-S, Lee W (2004) Chiral discrimination studies of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid by high-performance liquid chromatography and NMR spectroscopy. Magn Reson Chem 42:389鈥?95
    227. Lovely AE, Wenzel TJ (2006) Chiral NMR discrimination of secondary amines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. Org Lett 8:2823鈥?826
    228. Chisholm CD, Fueloep F, Forro E, Wenzel TJ (2010) Enantiomeric discrimination of cyclic 尾-amino acids using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Tetrahedron Asymmetry 21:2289鈥?294
    229. Lovely AE, Wenzel TJ (2008) Chiral NMR discrimination of amines: analysis of secondary, tertiary, and prochiral amines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. Chirality 20:370鈥?78
    230. Koide T, Ueno K (2001) Mechanistic study of enantiomeric recognition of primary amino compounds using an achiral crown ether with cyclodextrin by capillary electrophoresis and nuclear magnetic resonance. J Chromatogr A 923:229鈥?39
    231. Wenzel TJ, Bourne CE, Clark RL (2009) (18-Crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent for determining the enantiomeric purity and absolute configuration of 尾-amino acids. Tetrahedron Asymmetry 20:2052鈥?060
    232. Lovely AE, Wenzel TJ (2006) Chiral NMR discrimination of piperidines and piperazines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. J Org Chem 71:9178鈥?182
    233. Howard JA, Nonn M, Fulop F, Wenzel TJ (2013) Enantiomeric discrimination of isoxazoline fused 尾-amino acid derivatives using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Chirality 25:48鈥?3
    234. Bang E, Jin JY, Hong JH, Kang JS, Lee W, Lee W (2012) Comparative studies on enantiomer resolution of 伪-amino acids and their esters using (18-crown-6)-tetracarboxylic acid as a chiral crown ether selector by NMR spectroscopy and high-performance liquid chromatography. Bull Korean Chem Soc 33:3481鈥?484
    235. Szumna A (2009) Chiral encapsulation by directional interactions. Chem Eur J 15:12381鈥?2388
    236. Wehner M, Schrader T, Finocchiaro P, Failla S, Consiglio G (2000) A chiral sensor for arginine and lysine. Org Lett 2:605鈥?08
    237. Consiglio GA, Failla S, Finocchiaro P (2008) New cleft-like molecules and macrocycles from phosphonate substituted spirobisindanol. Molecules 13:678鈥?00
    238. Holman KT (2004) Cryptophanes: molecular containers. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. CRC, New York, pp 340鈥?48
    239. Canceill J, Lacombe L, Collet A (1985) Analytical optical resolution of bromochlorofluoromethane by enantioselective inclusion into a tailor-made cryptophane and determination of its maximum rotation. J Am Chem Soc 107:6993鈥?996
    240. Soulard P, Asselin P, Cuisset A, Aviles Moreno JR, Huet TR, Petitprez D, Demaison J, Freedman TB, Cao X, Nafie LA, Crassous J (2006) Chlorofluoroiodomethane as a potential candidate for parity violation measurements. Phys Chem Chem Phys 8:79鈥?2
    241. Bouchet A, Brotin T, Linares M, Aagren H, Cavagnat D, Buffeteau T (2011) Enantioselective complexation of chiral propylene oxide by an enantiopure water-soluble cryptophane. J Org Chem 76:4178鈥?181
    242. Bouchet A, Brotin T, Linares M, Cavagnat D, Buffeteau T (2011) Influence of the chemical structure of water-soluble cryptophanes on their overall chiroptical and binding properties. J Org Chem 76:7816鈥?825
    243. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383鈥?403
    244. Sachnov SJ, Schneiders K, Schulz PS, Wasserscheid P (2010) Chirality transfer in mandelate ionic liquids through ion pairing effects. Tetrahedron Asymmetry 21:1821鈥?824
    245. Bica K, Gaertner P (2008) Applications of chiral ionic liquids. Eur J Org Chem 3235鈥?250
    246. Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005鈥?012). Chirality 24:17鈥?3
    247. Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819鈥?822
    248. Rizvi SAA, Shamsi SA (2006) Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal Chem 78:7061鈥?069
    249. Yuan LM, Han Y, Zhou Y, Meng X, Li ZY, Zi M, Chang YX (2006) ( / R)- / N, / N, / N-Trimethyl-2-aminobutanol-bis(trifluoromethane-sulfon)imidate chiral ionic liquid used as chiral selector in HPCE, HPLC, and CGC. Anal Lett 39:1439鈥?449
    250. Wasserscheid P, Boesmann A, Bolm C (2002) Synthesis and properties of ionic liquids derived from the 鈥渃hiral pool鈥? Chem Commun 200鈥?01
    251. Ishida Y, Miyauchi H, Saigo K (2002) Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality. Chem Commun 2240鈥?241
    252. Ishida Y, Sasaki D, Miyauchi H, Saigo K (2006) Synthesis and properties of a diastereopure ionic liquid with planar chirality. Tetrahedron Lett 47:7973鈥?976
    253. Bwambok DK, Marwani HM, Fernand VE, Fakayode SO, Lowry M, Negulescu I, Strongin RM, Warner IM (2008) Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties. Chirality 20:151鈥?58
    254. Bwambok DK, Challa SK, Lowry M, Warner IM (2010) Amino acid-based fluorescent chiral ionic liquid for enantiomeric recognition. Anal Chem 82:5028鈥?037
    255. Gonzalez L, Altava B, Bolte M, Burguete MI, Garcia-Verdugo E, Luis SV (2012) Synthesis of chiral room temperature ionic liquids from amino acids 鈥?application in chiral molecular recognition. Eur J Org Chem 4996鈥?009
    256. Altava B, Barbosa DS, Isabel Burguete M, Escorihuela J, Luis SV (2009) Synthesis of new chiral imidazolium salts derived from amino acids: their evaluation in chiral molecular recognition. Tetrahedron Asymmetry 20:999鈥?003
    257. Tabassum S, Gilani MA, Wilhelm R (2011) Imidazolinium sulfonate and sulfamate zwitterions as chiral solvating agents for enantiomeric excess calculations. Tetrahedron Asymmetry 22:1632鈥?639
    258. De Rooy SL, Li M, Bwambok DK, El-Zahab B, Challa S, Warner IM (2011) Ephedrinium-based protic chiral ionic liquids for enantiomeric recognition. Chirality 23:54鈥?2
    259. Winkel A, Wilhelm R (2010) New chiral ionic liquids based on enantiopure sulfate and sulfonate anions for chiral recognition. Eur J Org Chem 5817鈥?824
    260. Kumar V, Pei C, Olsen CE, Schaeffer SJC, Parmar VS, Malhotra SV (2008) Novel carbohydrate-based chiral ammonium ionic liquids derived from isomannide. Tetrahedron Asymmetry 19:664鈥?71
    261. Yu S, Lindeman S, Tran CD (2008) Chiral ionic liquids: synthesis, properties, and enantiomeric recognition. J Org Chem 73:2576鈥?591
    262. Li M, Gardella J, Bwambok DK, El-Zahab B, de Rooy S, Cole M, Lowry M, Warner IM (2009) Combinatorial approach to enantiomeric discrimination: synthesis and 19F NMR screening of a chiral ionic liquid-modified silane library. J Comb Chem 11:1105鈥?114
    263. Folmer-Andersen JF, Kitamura M, Anslyn EV (2006) Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response. J Am Chem Soc 128:5652鈥?653
    264. Zhu X, Jiang J, Lei X, Chen X (2012) Rapid determination of enantiomeric excess of protected amino acids by catalytic amounts of chiral reagent. Anal Methods 4:1920鈥?923
    265. Prabhu UR, Suryaprakash N (2010) Selective homonuclear decoupling in 1H NMR: application to visualization of enantiomers in chiral aligning medium and simplified analyses of spectra in isotropic solutions. J Phys Chem A 114:5551鈥?557
    266. Nath N, Kumari D, Suryaprakash N (2011) Application of selective F1 decoupled 1H NMR for enantiomer resolution and accurate measurement of enantiomeric excess at low chiral substrate/auxiliary concentration. Chem Phys Lett 508:149鈥?54
    267. Pirkle WH, Sikkenga DL (1975) Use of achiral shift reagents to indicate relative stabilities of diastereomeric solvates. J Org Chem 40:3430鈥?434
    268. Shundo A, Labuta J, Hill JP, Ishihara S, Ariga K (2009) Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. J Am Chem Soc 131:9494鈥?495
    269. Labuta J, Ishihara S, Shundo A, Arai S, Takeoka S, Ariga K, Hill JP (2011) Chirality sensing by nonchiral porphines. Chem Eur J 17:3558鈥?561
    270. Shoji Y, Tashiro K, Aida T (2006) Sensing of chiral fullerenes by a cyclic host with an asymmetrically distorted 蟺-electronic component. J Am Chem Soc 128:10690鈥?0691
    271. Shoji Y, Tashiro K, Aida T (2008) Chirality sensing of fullerenes using cyclic hosts having a chiral / N-substituted porphyrin: a remote substituent effect. Chirality 20:420鈥?24
    272. Hanna GM (2006) NMR regulatory analysis: enantiomeric purity determination for ( / R)-(鈭?-desoxyephedrine and antipode methamphetamine. Pharmazie 61:188鈥?93
    273. Casy AF (1967) Applications of nuclear magnetic resonance spectroscopy in medicinal and pharmaceutical chemistry. J Pharm Sci 56:1049鈥?063
    274. Holzgrabe U (2010) Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc 57:229鈥?40
    275. Rao RN, Ramachandra B, Santhakumar K (2012) Evaluation of ( / R)-(鈭?-伪-methoxyphenylacetic acid as a chiral shift reagent for resolution and determination of / R and / S enantiomers of modafinil in bulk drugs and formulations by 1H NMR spectroscopy. Chirality 24:339鈥?44
    276. Nunez-Agueero C-J, Escobar-Llanos C-M, Diaz D, Jaime C, Garduno-Juarez R (2006) Chiral discrimination of ibuprofen isomers in 尾-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies. Tetrahedron 62:4162鈥?172
  • 作者单位:Gloria Uccello-Barretta (12)
    Federica Balzano (12)

    12. Dipartimento di Chimica e Chimica Industriale, Universit脿 di Pisa, via Risorgimento 35, 56126, Pisa, Italy
  • ISSN:1436-5049
文摘
This chapter will describe the general features and main categories of chiral solvating agents (CSAs) for NMR spectroscopy, spanning from low-medium sized CSAs to macrocyclic ones. CSAs based on chiral ionic liquids (CILs) will be introduced in view of their increasing popularity, and, finally, a short paragraph will be dedicated to special applications of CSAs in particular experimental conditions. Several valuable works, which are mainly devoted to investigate enantiodifferentiation mechanisms by NMR, will not be discussed. The main objective is to identify the current trend in the research areas dedicated to the development of new CSAs for NMR spectroscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700