Transport properties of ephedrine hydrochloride through poly(vinyl alcohol) matrices—a simple method for enantiomeric differentiation
详细信息    查看全文
  • 作者:Artur J. M. Valente (1)
    Cesar M. C. Filho (1)
    Adley Rubira (2)
    Edvani C. Muniz (2)
    Hugh D. Burrows (1)
  • 关键词:Ephedrine ; Poly(vinyl alcohol) ; Enantiodifferentiation ; Transport properties ; Cryogel membranes
  • 刊名:Colloid & Polymer Science
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:292
  • 期:7
  • 页码:1665-1673
  • 全文大小:324 KB
  • 参考文献:1. U.S. Department of Health and Human Services (2004) Final rule declaring dietary supplements containing ephedrine alkaloids adulterated because they present an unreasonable risk. Final rule. Fed Regist 69:6787-854
    2. Betz JM, Gay ML, Mossoba MM et al (1997) Chiral gas chromatographic determination of ephedrine-type alkaloids in Ma-Huang containing dietary supplements. J AOAC Int 80:303-15
    3. Gmeiner G, Geinsendorfer T, Kainzbauer J, Nikolajevic M (2001) Quantification of ephedrines in urine without sample preparation. In: Donike M, Schanzer W, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis. Sport and Buch Strauss, K?ln, Vol.9
    4. Shekelle PG, Hardy ML, Morton SC et al (2003) Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289:1537-545. doi:10.1001/jama.289.12.1537
    5. Zhang L, Han D, Song X et al (2008) Effects of ephedrine on human nasal ciliary beat frequency. ORL J Otorhinolaryngol Relat Spec 70:91-6. doi:10.1159/000114531 CrossRef
    6. Vansal SS, Feller DR (1999) Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem Pharmacol 58:807-10 CrossRef
    7. Rekharsky MV, Goldberg RN, Schwarz FP et al (1995) Thermodynamic and nuclear magnetic resonance study of the interactions of .alpha.- and .beta.-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J Am Chem Soc 117:8830-840. doi:10.1021/ja00139a017 CrossRef
    8. Kataky R, Parker D, Kelly PM (1995) Potentiometric, enantioselective sensors for alkyl and aryl ammonium ions of pharmaceutical significance, based on lipophilic cyclodextrins. Scand J Clin Lab Invest 55:409-19. doi:10.3109/00365519509104980 CrossRef
    9. Gafni A, Cohen Y, Kataky R et al (1998) Enantiomer discrimination using lipophilic cyclodextrins studied by electrode response, pulsed-gradient spin-echo (PGSE) NMR and relaxation rate measurements. J Chem Soc Perkin Trans 2:19-4. doi:10.1039/a705921c CrossRef
    10. Kataky R, Lopes P (2009) Chiral detection at a liquid-liquid interface. Chem Commun (Camb) 1490-492. doi: 10.1039/b822685g
    11. Piletsky SA, Karim K, Piletska EV et al (2001) Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst 126:1826-830. doi:10.1039/b102426b CrossRef
    12. Ansell RJ, Wang D, Kuah JKL (2008) Imprinted polymers for chiral resolution of +/??ephedrine. Part 2: probing pre-polymerisation equilibria in different solvents by NMR. Analyst 133:1673-683. doi:10.1039/b806376a CrossRef
    13. Yu Z, Cui M, Yan C et al (2007) Gas-phase chiral discrimination of ephedrine and pseudoephedrine associated with cyclodextrins. J Mass Spectrom 42:1106-110. doi:10.1002/jms.1249 CrossRef
    14. Hu X, Li G, Li M et al (2008) Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv Funct Mater 18:575-83. doi:10.1002/adfm.200700527 CrossRef
    15. Peppas NA (1986) Hydrogels in medicine and pharmacy, vol I–III. CRC, Boca Raton
    16. Habaue S, Satonaka T, Nakano T, Okamoto Y (2004) Synthesis of polymer gel with chiral helical cavity by molecular imprinting using bifunctional vinyl monomers. Polymer (Guildf) 45:5095-100. doi:10.1016/j.polymer.2004.04.045 CrossRef
    17. Aoki T, Muramatsu M, Nishina A et al (2004) Thermosensitivity of optically active hydrogels constructed with N-(L)-(1-hydroxymethyl)propylmethacrylamide. Macromol Biosci 4:943-49. doi:10.1002/mabi.200400033 CrossRef
    18. Li L, Du X, Deng J, Yang W (2011) Synthesis of optically active macroporous poly(N-isopropylacrylamide) hydrogels with helical poly(N-propargylamide) for chiral recognition of amino acids. React Funct Polym 71:972-79. doi:10.1016/j.reactfunctpolym.2011.06.006 CrossRef
    19. Gupta S, Goswami S, Sinha A (2012) A combined effect of freeze–thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater 7:015006. doi:10.1088/1748-6041/7/1/015006 CrossRef
    20. Patachia S, Valente AJM, Papancea A, Lobo VMM (2007) Poly(vinyl Alcohol) [PVA]-based polymer membranes: synthesis and applications. Nova Science, New York
    21. Wang Y, Chung TS, Wang H (2011) Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AIChE J 57:1470-484. doi:10.1002/aic.12360 CrossRef
    22. Sawatsubashi T, Tsukahara C, Baba K et al (2008) Development of new-type rapid analysis technology of polychlorinated biphenyls by using liquid chromatographic clean-up material (polyvinyl alcohol gel). J Chromatogr A 1177:138-49. doi:10.1016/j.chroma.2007.11.014 CrossRef
    23. Valente AJM, Ribeiro ACF, Marques JMC et al (2010) Transport properties of aqueous solutions of (1 R,2 S)-(?- and (1 S,2 R)-(+)-ephedrine hydrochloride at different temperatures. J Chem Eng Data 55:1145-152. doi:10.1021/je9005757 CrossRef
    24. Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908. doi:10.1039/c0sm01307b CrossRef
    25. Valente AJM, Cruz SMA, Murtinho DMB et al (2013) DNA-poly(vinyl alcohol) gel matrices: release properties are strongly dependent on electrolytes and cationic surfactants. Colloids Surf B: Biointerfaces 101:111-17. doi:10.1016/j.colsurfb.2012.05.039 CrossRef
    26. Gabardo S, Rech R, Ayub MAZ (2011) Determination of lactose and ethanol diffusion coefficients in calcium alginate gel spheres: predicting values to be used in immobilized bioreactors. J Chem Eng Data 56:2305-309. doi:10.1021/je101288g CrossRef
    27. Reis AV, Guilherme MR, Rubira AF, Muniz EC (2007) Mathematical model for the prediction of the overall profile of in vitro solute release from polymer networks. J Colloid Interface Sci 310:128-35. doi:10.1016/j.jcis.2006.12.058 CrossRef
    28. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25-5. doi:10.1016/0378-5173(83)90064-9 CrossRef
    29. Patachia S, Valente AJM, Baciu C (2007) Effect of non-associated electrolyte solutions on the behaviour of poly(vinyl alcohol)-based hydrogels. Eur Polym J 43:460-67. doi:10.1016/j.eurpolymj.2006.11.009 CrossRef
    30. Baker JP, Stephens DR, Blanch HW, Prausnitz JM (1992) Swelling equilibria for acrylamide-based polyampholyte hydrogels. Macromolecules 25:1955-958. doi:10.1021/ma00033a019 CrossRef
    31. Sriamornsak P, Sungthongjeen S (2007) Modification of theophylline release with alginate gel formed in hard capsules. AAPS PharmSciTech 8:E51. doi:10.1208/pt0803051 CrossRef
    32. M?ckel JE, Lippold BC (1993) Zero-order drug release from hydrocolloid matrices. Pharm Res 10:1066-070 CrossRef
    33. Stauffer SR, Peppast NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer (Guildf) 33:3932-936. doi:10.1016/0032-3861(92)90385-A CrossRef
    34. Papancea A, Valente AJM, Patachia S et al (2008) PVA-DNA cryogel membranes: characterization, swelling, and transport studies. Langmuir 24:273-79. doi:10.1021/la702639d CrossRef
    35. Mitsumata T, Hasegawa C, Kawada H et al (2008) Swelling and viscoelastic properties of poly(vinyl alcohol) physical gels synthesized using sodium silicate. React Funct Polym 68:133-40. doi:10.1016/j.reactfunctpolym.2007.10.003 CrossRef
    36. Hassan CM, Peppas NA (2000) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37-5 CrossRef
    37. Naghash HJ, Okay O (1996) Formation and structure of polyacrylamide gels. J Appl Polym Sci 60:971-79. doi:10.1002/(SICI)1097-4628(19960516)60:7<971::AID-APP7>3.0.CO;2-J CrossRef
    38. Lobo VMM (1990) Handbook of electrolyte solutions. Elsevier, Amsterdam
    39. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382-395. doi:10.1021/ma980765f CrossRef
    40. Cukier RI (1984) Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 17:252-55. doi:10.1021/ma00132a023 CrossRef
    41. Lustig SR, Peppas NA (1988) Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J Appl Polym Sci 36:735-47. doi:10.1002/app.1988.070360401 CrossRef
    42. Yasuda H, Lamaze CE, Ikenberry LD (1968) Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Makromol Chim 118:19-5 CrossRef
    43. Valente AJM, Polishchuk AY, Burrows HD et al (2003) Sorption/diffusion behaviour of anionic surfactants in polyacrylamide hydrogels: from experiment to modelling. Eur Polym J 39:1855-865. doi:10.1016/S0014-3057(03)00108-3 CrossRef
    44. Pereira AGB, Fajardo AR, Nocchi S et al (2013) Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells. Carbohydr Polym 98:711-20. doi:10.1016/j.carbpol.2013.06.013 CrossRef
    45. Tyrrell HJV, Harris KR (1984) Diffusion in Liquids. Butterworths, London
    46. Valente AJM, Cruz SMA, Murtinho DB, Muniz EC, Miguel MG (2010) Release of DNA from cryogel PVA-DNA membranes. eXPRESS Polym Lett 4:480-87. doi:10.3144/expresspolymlett.2010.61 CrossRef
    47. Asman G, ?anl? O, Tuncel D (2008) In vitro release of salicylic acid through poly(vinyl alcohol-g-itaconic acid) membranes. J Appl Polym Sci 107:3291-299. doi:10.1002/app.27484 CrossRef
    48. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346-370. doi:10.1021/cr8003828 CrossRef
    49. Beter-Rogac M (2009) Nonsteroidal anti-inflammatory drugs ion mobility: a conductometric study of salicylate, naproxen, diclofenac and ibuprofen dilute aqueous solutions. Acta Chim Slov 56:70-7
    50. Flory PJ, Rehner J (1943) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521-26. doi:10.1063/1.1723792 CrossRef
    51. Flory PJ (1953) Principles of polymer chemistry. Cornell University, Ithaca
  • 作者单位:Artur J. M. Valente (1)
    Cesar M. C. Filho (1)
    Adley Rubira (2)
    Edvani C. Muniz (2)
    Hugh D. Burrows (1)

    1. Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
    2. Grupo de Materiais Poliméricos e Compósitos, GMPC - Departamento de Química, Universidade Estadual de Maringá, UEM, 87020-900, Maringá, Paraná, Brazil
  • ISSN:1435-1536
文摘
Equilibrium and transport properties have been investigated of ephedrines, a class of sympathomimetic amines, through cryogel membranes of poly(vinyl alcohol) (PVA). The effect of the PVA (10 to 18?% (w/v)) on the release properties of (1S,2R)-(+)-ephedrine hydrochloride has been discussed on the basis of partition–diffusion and power-law models. The effect of PVA concentration on the swelling degree of PVA–ephedrine matrices have been measured, allowing the estimation of the volume fraction of polymer in the gel. Ephedrine release rate constants, computed by using a first-order kinetics approach, have been modeled by using free-volume and hydrodynamic-scaling models. Differences in the release properties of the ephedrine isomers, (1S,2R)-(+)- and (1R,2S)-(?-ephedrine as their hydrochlorides, have also been studied at different temperatures. The release kinetic constants and the corresponding activation energies show a marked discrimination between the two ephedrine isomers. This suggests that PVA cryogel membranes possess high potential for enantiomeric differentiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700