Enhanced brain release of erythropoietin, cytokines and NO during carotid clamping
详细信息    查看全文
  • 作者:Stephana Carelli ; Giorgio Ghilardi ; Paola Bianciardi…
  • 关键词:Carotid endarterectomy ; Erythropoietin ; Nitric oxide ; Neuroprotection
  • 刊名:Neurological Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:37
  • 期:2
  • 页码:243-252
  • 全文大小:960 KB
  • 参考文献:1.North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med 325:445–453CrossRef
    2.GALA Trial Collaborative Group (2008) General anesthesia versus local anesthesia for carotid surgery (GALA): a multicentre, randomised controlled trial. Lancet 372(9656):2132–2142CrossRef
    3.Brott TG, Hobson RW, Howard G, Roubin GS, Clark WM, Brooks W et al (2010) Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 363(1):11–23PubMedCentral CrossRef PubMed
    4.Gondalia J, Fagerberg B, Hulthe J, Karlstrom L, Nilsson U, Waters S et al (2007) Relationships between free radical levels during carotid endarterectomy and markers of arteriosclerotic disease. Int J Med Sci 4(3):124–130PubMedCentral CrossRef PubMed
    5.Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET et al (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19(6):643–651CrossRef PubMed
    6.Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589(Pt6):1251–1258PubMedCentral CrossRef PubMed
    7.Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C et al (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 99(14):9450–9455PubMedCentral CrossRef PubMed
    8.Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S et al (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci USA 102(45):16379–16384PubMedCentral CrossRef PubMed
    9.Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6:484–494CrossRef PubMed
    10.Kawakami M, Iwasaki S, Sato K, Takahashi M (2000) Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem Biophys Res Commun 279(1):293–297CrossRef PubMed
    11.Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104(7):2073–2080CrossRef PubMed
    12.Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-De Vicente E, Reina M, Vilaro S, Fabre M (2003) Erythropoietin protects the in vitro blood
    ain barrier against VEGF-induced permeability. Eur J Neurosci 18(9):2538–2544CrossRef PubMed
    13.Marfia G, Madaschi L, Marra F, Menarini M, Bottai D, Formenti A et al (2011) Adult neural precursors isolated from post mortem brain yield mostly neurons: an erythropoietin-dependent process. Neurobiol Dis 43(1):86–98CrossRef PubMed
    14.Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y et al (2005) Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 568(Pt2):559–571
    15.Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53 (4Pt1):503–514
    16.Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A et al (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851PubMedCentral CrossRef PubMed
    17.Van Den Bosch L, Storkebaum E, Vleminckx V, Moons L, Vanopdenbosch L et al (2004) Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiol Dis 17(1):21–28CrossRef
    18.Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13(1):39–53CrossRef PubMed
    19.Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417CrossRef PubMed
    20.Baumbach GL, Sigmund CD, Faraci FM (2004) Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res 95(8):822–829CrossRef PubMed
    21.Moro MA, Cárdenas A, Hurtado O, Leza JC, Lizasoain I (2004) Role of nitric oxide after brain ischaemia. Cell Calcium 36(3–4):265–275CrossRef PubMed
    22.Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T et al (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103(3):921–926CrossRef PubMed
    23.Sautina L, Sautin Y, Beem E, Zhou Z, Schuler A, Brennan J et al (2010) Induction of nitric oxide by erythropoietin is mediated by the β common receptor and requires interaction with VEGF receptor 2. Blood 115(4):896–905CrossRef PubMed
    24.Banerjee D, Rodriguez M, Nag M, Adamson JW (2000) Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int 57(5):1895–1904CrossRef PubMed
    25.Walker BR, Resta TC, Nelin LD (2000) Nitric oxide-dependent pulmonary vasodilation in polycythemic rats. Am J Physiol Heart Circ Physiol 279(5):H2382–H2389PubMed
    26.Teng R, Calvert JW, Sibmooh N, Piknova B, Suzuki N, Sun J et al (2011) Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Res Cardiol 106(3):343–354PubMedCentral CrossRef PubMed
    27.Botes K, Le Roux DA, Van Marle J (2007) Cerebral monitoring during carotid endarterectomy—a comparison between electroencephalography, transcranial cerebral oximetry and carotid stump pressure. SAJS 45(2):43–46
    28.Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Chim Clin Acta 329(1):23–38CrossRef
    29.Fantacci M, Bianciardi P, Caretti A, Coleman TR, Cerami A, Brines M et al (2006) Carbamylated erythropoietin ameliorates the metabolic stress induced in vivo by severe chronic hypoxia. Proc Natl Acad Sci USA 103(43):17531–17536PubMedCentral CrossRef PubMed
    30.Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP Assay. Anal Biochem 239(1):70–76CrossRef PubMed
    31.Korkmaza G, Altınoglub E, Civelekc S, Sozerd V, Erdenenb F, Tabake O (2013) The association of oxidative stress markers with conventional risk factors in the metabolic syndrome. Metabolism 62(6):828–835CrossRef
    32.Taoufik E, Petit E, Divoux D, Tseveleki V, Mengozzi M, Roberts ML, Valable S, Ghezzi P, Quackenbush J, Brines M, Cerami A, Probert L (2008) TNF receptor I sensitize neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proc Natl Acad Sci USA 105(16):6185–6190PubMedCentral CrossRef PubMed
    33.vonWussow U, Klaus J, Pagel H (2005) Is the renal production of erythropoietin controlled by the brain stem? Am J Physiol Endocrinol Metab 289(1):E82–E86CrossRef
    34.Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5(6):437–448CrossRef PubMed
    35.Rahimi Nedjat M, Wähmann M, Bächli H, Güresir E, Vatter H, Raabe A et al (2013) Erythropoietin neuroprotection is enhanced by direct cortical application following subdural blood evacuation in a rat model of acute subdural hematoma. Neuroscience 238:125–134CrossRef
    36.Stoppe C, Coburn M, Fahlenkamp A, Ney J, Kraemer S, Rossaint R, Goetzenich A (2015) Elevated serum concentrations of erythropoietin after xenon anaesthesia in cardiac surgery: secondary analysis of a randomized controlled trial. Br J Anaesth 114(4):701–703CrossRef PubMed
    37.Tanaka T, Kai S, Koyama T, Daijo H, Adachi T, Fukuda K, Hirota K (2011) General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain. PLoS One 6(12):e29378PubMedCentral CrossRef PubMed
    38.Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X (2007) Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 425(3):177–182CrossRef PubMed
    39.Shen Y, Wang Y, Li D, Wang C, Xu B, Dong G et al (2010) Recombinant human erythropoietin pretreatment attenuates heart ischemia-reperfusion injury in rats by suppressing the systemic inflammatory response. Transplant Proc 42(5):1595–1597CrossRef PubMed
    40.Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167CrossRef PubMed
  • 作者单位:Stephana Carelli (1)
    Giorgio Ghilardi (1)
    Paola Bianciardi (1)
    Elisa Latorre (1)
    Federico Rubino (1)
    Marina Bissi (2)
    Anna Maria Di Giulio (1)
    Michele Samaja (1)
    Alfredo Gorio (1)

    1. Department of Health Sciences, University of Milan, via A. Di Rudinì, 8, 20142, Milan, Italy
    2. AO San Paolo, via Antonio Di Rudinì 8, 20142, Milan, Italy
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurology
    Neuroradiology
    Neurosurgery
    Psychiatry
  • 出版者:Springer Milan
  • ISSN:1590-3478
文摘
Although effective and safe, carotid endarterectomy (CEA) implies a reduced blood flow to the brain and likely an ischemia/reperfusion event. The high rate of uneventful outcomes associated with CEA suggests the activation of brain endogenous protection mechanisms aimed at limiting the possible ischemia/reperfusion damage. This study aims at assessing whether CEA triggers protective mechanisms such as brain release of erythropoietin and nitric oxide. CEA was performed in 12 patients; blood samples were withdrawn simultaneously from the surgically exposed ipsilateral jugular and leg veins before, during (2 and 40 min) and after clamp removal (2 min). Plasma antioxidant capacity, carbonylated proteins, erythropoietin, nitrates and nitrites (NOx) were determined. No changes in intraoperative EEG, peripheral and transcranial blood oxygen saturation were detectable, and no patients showed any neurologic sign after the intervention. Antioxidant capacity and protein carbonylation in plasma were unaffected. Differently, erythropoietin, VEGF, TNF-α and NOx increased during clamping in the jugular blood (2 and 40 min), while no changes were observed in the peripheral circulation. These results show that blood erythropoietin, VEGF, TNF-α, and NOx increased in the brain during uncomplicated CEA. This may represent an endogenous self-activated neuroprotective mechanism aimed at the prevention of ischemia/reperfusion damage. Keywords Carotid endarterectomy Erythropoietin Nitric oxide Neuroprotection

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700