Biofilm, pathogenesis and prevention—a journey to break the wall: a review
详细信息    查看全文
  • 作者:Priya Gupta ; Subhasis Sarkar ; Bannhi Das ; Surajit Bhattacharjee…
  • 关键词:Biofilm formation ; Pathogenesis ; Drug tolerance ; Antibiofilm therapeutics
  • 刊名:Archives of Microbiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:198
  • 期:1
  • 页码:1-15
  • 全文大小:2,885 KB
  • 参考文献:Akiyama H, Huh WK, Yamasaki O, Oono T, Iwatsuki K (2002) Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br J Dermatol 147(5):879–885PubMed CrossRef
    Alhede M, Alhede M (2014) The biofilm challenge. EWMA J 14:1
    Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391PubMed CrossRef
    Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26(9):1067–1077PubMed CrossRef
    Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85(4):1095–1104PubMed CrossRef
    Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence 2(5):445–459PubMed PubMedCentral CrossRef
    Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajash KV (2010) High-density polyethylene(HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51(2):205–211PubMed
    Baveja JK, Willcox MDP, Hume EBH, Kumar N, Odell R, Poole-Warren LA (2004) Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials 25(20):5003–5012PubMed CrossRef
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121(s136):1–58CrossRef
    Blackledge MS, Worthington RJ, Melander C (2013) Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 13(5):699–706PubMed PubMedCentral CrossRef
    Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5(4):e10146PubMed PubMedCentral CrossRef
    Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1(1):19PubMed PubMedCentral CrossRef
    Bowling FL, Jude EB, Boulton AJ (2009) MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diabetes Rep 9(6):440–444CrossRef
    Boyce BM, Lindsey BA, Clovis NB, Smith ES, Hobbs GR, Hubbard DF, Emery SE, Barnett JB, Li B (2012) Additive effects of exogenous IL-12 supplementation and antibiotic treatment in infection prophylaxis. J Orthop Res 30(2):196–202PubMed PubMedCentral CrossRef
    Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73(3):434–445PubMed PubMedCentral CrossRef
    Brinkman FS, Macfarlane EL, Warrener P, Hancock RE (2001) Evolutionary relationships among virulence-associated histidine kinases. Infect Immun 69(8):5207–5211PubMed PubMedCentral CrossRef
    Bruellhoff K, Fiedler J, Moller M, Groll J, Brenner RE (2010) Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs 33(9):646–653PubMed
    Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7(6):e38492PubMed PubMedCentral CrossRef
    Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of Staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75(1):125–132PubMed CrossRef
    Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199PubMed CrossRef
    Ciampolini J, Harding KG (2000) Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 76(898):479–483PubMed PubMedCentral CrossRef
    Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264PubMed PubMedCentral CrossRef
    Cortes ME, Consuegra J, Sinisterra RD (2011) Biofilm formation, control and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv 2:896–905
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMed CrossRef
    Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433PubMed PubMedCentral
    Crossley KB, Jefferson KK, Archer GL, Fowler VG (2009) Staphylococci in human disease, 2nd illustrated edn. Blackwell, West SussexCrossRef
    Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867PubMed PubMedCentral CrossRef
    Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403PubMed PubMedCentral CrossRef
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298PubMed CrossRef
    De Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138PubMed CrossRef
    De Boer W, Gunnewiek PK, Veenhuis M, Bock E, Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl Environ Microbiol 57(12):3600–3604PubMed PubMedCentral
    De la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589PubMed CrossRef
    Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, Lu Y, Zhou S (2011) Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60(12):1827–1834PubMed CrossRef
    Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52(8):1038–1045PubMed CrossRef
    Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287(5459):1796–1799PubMed CrossRef
    Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102(8):3016–3021PubMed PubMedCentral CrossRef
    Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633PubMed
    Foreman A, Wormald PJ (2010) Different biofilms, different disease? A clinical outcomes study. Laryngoscope 120(8):1701–1706PubMed CrossRef
    Fraimow HS (2009) Systemic antimicrobial therapy in osteomyelitis. Semin Plast Surg 23(2):90PubMed PubMedCentral CrossRef
    Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 22(2):167
    Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, Golemi-Kotra D (2013) Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52(45):7975–7986PubMed CrossRef
    Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRef
    Gjodsbol K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3(3):225–231PubMed CrossRef
    Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR, Monahan LG, Cavaliere R, Charles IG, Wand MP, Gee ML, Prabhakar R, Whitchurch CB (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci 110(28):11541–11546PubMed PubMedCentral CrossRef
    Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22(5):667–674PubMed CrossRef
    Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quarternary ammonium silane coatings on silicone rubber. Biomaterials 23(6):1417–1423PubMed CrossRef
    Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378PubMed CrossRef
    Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043PubMed CrossRef
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108PubMed CrossRef
    Hansson C, Hoborn J, Moller A, Swanbeck G (1995) The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique. Acta Derm Venereol 75(1):24–30PubMed
    Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38(6):704–713PubMed CrossRef
    Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci Front Plant Sci 5:131PubMed
    Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BH (2009) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75(18):6022–6025PubMed PubMedCentral CrossRef
    Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110PubMed CrossRef
    Humblot V, Yala JF, Thebault P, Boukerma K, Hequet A, Berjeaud JM, Pradier CM (2009) The antibacterial activity of Mangainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30(21):3503–3512PubMed CrossRef
    Hurlow J, Couch K, Laforet K, Bolton L, Metcalf D, Bowler P (2015) Clinical biofilms: a challenging frontier in wound care. Adv Wound Care 4(5):295–301CrossRef
    Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74(2):470–476PubMed PubMedCentral CrossRef
    Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56(5):2314–2325PubMed PubMedCentral CrossRef
    Jonas K, Melefors O, Romling U (2009) Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 4(3):341–358PubMed CrossRef
    Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48(7):2633–2636PubMed PubMedCentral CrossRef
    Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347PubMed PubMedCentral CrossRef
    Kim HS, Park HD (2013) Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 8(9):e76106PubMed PubMedCentral CrossRef
    Koch C, Hoiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341(8852):1065–1069PubMed CrossRef
    Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol 6(1):78–84
    Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8(2):159–168
    Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629PubMed PubMedCentral CrossRef
    Kong W, Chen L, Zhao J, Shen T, Surette MG, Shen L, Duan K (2013) Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol Microbiol 88(4):784–797PubMed CrossRef
    Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med 3(4):a010306:1–23CrossRef
    Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27PubMed CrossRef
    Kumar V, Abbas AK, Fausto N, Mitchell R (2007) Robbins basic pathology, 8th edn. Elsevier. pp 810–811. ISBN 978-1-4160-2973-1
    Kumon H, Tomochika KI, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–619PubMed CrossRef
    Lamont RJ, Jenkinson HF (1998) Life below gum line: pathogenetic mechanisms of Porphromonas gingivalis. Microbiol Mol Biol Rev 62(4):1244–1263PubMed PubMedCentral
    Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57(1):137–145PubMed PubMedCentral CrossRef
    Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379PubMed CrossRef
    Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45(4):999–1007PubMed PubMedCentral CrossRef
    Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23(7):343–348PubMed CrossRef
    Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15(2):194–222PubMed PubMedCentral CrossRef
    Ma Y, Chen M, Jones JE, Ritts AC, Yu Q, Sun H (2012) Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother 56(11):5923–5937PubMed PubMedCentral CrossRef
    Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res Part A 84(2):425–435CrossRef
    Maric S, Vranes J (2007) Characteristics and significance of microbial biofilm formation. Period Bilogor 109:115–121
    Masak J, Cejkova A, Schreiberova O, Rezanka T (2014) Pseudomonas biofilms: possibilities of their control. FEMS Microbiol Ecol 89(1):1–14PubMed CrossRef
    Massol-Deya AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61(2):769–777PubMed PubMedCentral
    Moreau-Marquis S, O’Toole GA, Stanton BA (2009) Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 41(3):305–313PubMed PubMedCentral CrossRef
    Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32(4):518–523PubMed PubMedCentral CrossRef
    Osmon DR, Berbari EF (2002) Outpatient intravenous antimicrobial therapy for the practicing orthopaedic surgeon. Clin Orthop Relat Res 403:80–86PubMed CrossRef
    Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7(8):555–567PubMed PubMedCentral CrossRef
    Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188PubMed CrossRef
    Overman PR (2007) Biofilm : a new view of plaque. J Contemp Dent Pract 1(3):18–29
    Paerl HW, Pinckney JL (1996) A minireview of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247PubMed CrossRef
    Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64PubMed PubMedCentral CrossRef
    Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57(1):677–701PubMed CrossRef
    Perez-Giraldo C, Rodriguez-Benito A, Moran FJ, Hurtado C, Blanco MT, Gomez-Garcia AC (1997) Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother 39(5):643–646PubMed CrossRef
    Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG (2008) Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med 168(8):805–819PubMed CrossRef
    Podbielski A, Kreikemeyer B (2004) Cell density-dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. Int J Infect Dis 8(2):81–95PubMed CrossRef
    Privett BJ, Youn J, Hong SA, Lee J, Han J, Shin JH, Schoenfisch MH (2011) Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir 27(15):9597–9601PubMed PubMedCentral CrossRef
    Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191PubMed PubMedCentral CrossRef
    Rao N, Ziran BH, Lipsky BA (2011) Treating osteomylitis: antibiotics and surgery. Plast Reconstr Surg 127(1):177S–187SPubMed CrossRef
    Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM (2013) Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 159(Pt 5):924–938PubMed CrossRef
    Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res Int 2015:1–17CrossRef
    Reid DW, O’May C, Kirov SM, Roddam L, Lamont IL, Sanderson K (2009) Iron chelation directed against biofilms as an adjunct to conventional antibiotics. Am J Physiol Lung Cell Mol Physiol 296:L857–L858PubMed CrossRef
    Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8(1):e53441PubMed PubMedCentral CrossRef
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154PubMed PubMedCentral CrossRef
    Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12):1468–1480PubMed CrossRef
    Schultz G, Phillips P, Yang Q, Stewart PS (2010) Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care 19(8):320PubMed CrossRef
    Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42(1):1–7PubMed CrossRef
    Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5):340–345PubMed CrossRef
    Simoes M, Pereira MO, Vieira MJ (2005) Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res 39(2):478–486PubMed CrossRef
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764PubMed CrossRef
    Stephenson MF, Mfuna L, Dowd SE, Wolcott RD, Barbeau J, Poisson M, James G, Desrosiers M (2010) Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg 39(2):182–187PubMed
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138PubMed CrossRef
    Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69(1):183–215PubMed CrossRef
    Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002a) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29(6):361–367PubMed CrossRef
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002b) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209PubMed CrossRef
    Sutherland IW (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym 38(4):319–328CrossRef
    Tack KJ, Sabath LD (1985) Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31(3):204–210PubMed CrossRef
    Tribedi P, Sil AK (2014) Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol 116(2):295–303PubMed CrossRef
    Tribedi P, Gupta AD, Sil AK (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2(1):1–10CrossRef
    Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(5):1297–1304PubMed
    Vasudevan R (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1(3):00014
    von Eiff C, Heilmann C, Herrmann M, Peters G (1999) Basic aspects of the pathogenesis of staphylococcal polymer associated infections. Infection 27:S7–S10CrossRef
    Wahlig H, Dingeldein E (1980) Antibiotics and bone cements experimental and clinical long-term observations. Acta Orthop Acta Orthop Scand 51(1):49–56PubMed CrossRef
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487PubMed CrossRef
    Wilson M (2001) Bacterial biofilms and human disease. Sci Prog 84(3):235–254PubMed CrossRef
    Yang L, Liu Y, Wu H, Song Z, Hoiby N, Molin S, Givskov M (2012) Combating biofilms. FEMS Immunol Med Microbiol 65(2):146–157PubMed CrossRef
    Ziran BH (2007) Osteomyelitis. J Trauma 62(6):59–60CrossRef
  • 作者单位:Priya Gupta (1)
    Subhasis Sarkar (1)
    Bannhi Das (2)
    Surajit Bhattacharjee (1)
    Prosun Tribedi (3)

    1. Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
    2. Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
    3. Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Microbial Ecology
    Biochemistry
    Cell Biology
    Biotechnology
    Ecology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-072X
文摘
Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700