Molecular scissors and their application in genetically modified farm animals
详细信息    查看全文
  • 作者:Bjoern Petersen ; Heiner Niemann
  • 关键词:Zinc ; finger nucleases ; Transcription ; activator like endonucleases ; Meganucleases ; CRISPR/Cas9 ; Molecular scissors ; Transgenic animals ; Gene targeting ; Genome editing
  • 刊名:Transgenic Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:24
  • 期:3
  • 页码:381-396
  • 全文大小:773 KB
  • 参考文献:Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Rolland S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Paques F (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355(3):443鈥?58. doi:10.鈥?016/鈥媕.鈥媕mb.鈥?005.鈥?0.鈥?65 PubMed View Article
    Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, Smith J (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel PEDS 24(1鈥?):27鈥?1. doi:10.鈥?093/鈥媝rotein/鈥媑zq083 View Article
    Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273鈥?97. doi:10.鈥?146/鈥媋nnurev-genet-110410-132430 PubMed View Article
    Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169鈥?175PubMed Central PubMed
    Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419鈥?36. doi:10.鈥?146/鈥媋nnurev-phyto-080508-081936 PubMed View Article
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509鈥?512. doi:10.鈥?126/鈥媠cience.鈥?178811 PubMed View Article
    Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451鈥?59. doi:10.鈥?534/鈥媑enetics.鈥?10.鈥?17002 PubMed Central PubMed View Article
    Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43):17382鈥?7387. doi:10.鈥?073/鈥媝nas.鈥?211446109 PubMed Central PubMed View Article
    Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16(7):1200鈥?207. doi:10.鈥?038/鈥媘t.鈥?008.鈥?14 PubMed View Article
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.鈥?093/鈥媙ar/鈥媑kr218 PubMed Central PubMed View Article
    Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29(18):3757鈥?774PubMed Central PubMed View Article
    Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15(4):1968鈥?973PubMed Central PubMed
    Christian M, Cermak T, Doyle E, Schmidt C, Zhang F, Hummel A, Bogdanove A, Voytas D (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757鈥?61PubMed Central PubMed View Article
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819鈥?23. doi:10.鈥?126/鈥媠cience.鈥?231143 PubMed Central PubMed View Article
    Cooper DK, Ayares D (2011) The immense potential of xenotransplantation in surgery. Int J Surg 9(2):122鈥?29. doi:10.鈥?016/鈥媕.鈥媔jsu.鈥?010.鈥?1.鈥?02 PubMed View Article
    Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64鈥?7. doi:10.鈥?038/鈥媙bt.鈥?731 PubMed View Article
    De P, Rodgers KK (2004) Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol Rev 200:70鈥?2. doi:10.鈥?111/鈥媕.鈥?105-2896.鈥?004.鈥?0154.鈥媥 PubMed View Article
    de Villartay JP, Fischer A, Durandy A (2003) The mechanisms of immune diversification and their disorders. Nat Rev Immunol 3(12):962鈥?72. doi:10.鈥?038/鈥媙ri1247 PubMed View Article
    Defrancesco L (2011) Move over ZFNs. Nat Biotechnol 29(8):681鈥?84View Article
    Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12(8):3365鈥?371PubMed Central PubMed
    Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18(7):4070鈥?078PubMed Central PubMed
    Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128(7):2477鈥?484. doi:10.鈥?021/鈥媕a057519l PubMed View Article
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702鈥?08. doi:10.鈥?038/鈥媙bt1409 PubMed Central PubMed View Article
    Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459鈥?60PubMed View Article
    Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952鈥?962PubMed Central PubMed View Article
    Flannagan RS, Linn T, Valvano MA (2008) A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. Environ Microbiol 10(6):1652鈥?660. doi:10.鈥?111/鈥媕.鈥?462-2920.鈥?008.鈥?1576.鈥媥 PubMed View Article
    Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6(6):e21045. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?021045 PubMed Central PubMed View Article
    Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X, Kurome M, Zakhartchenko V, Kessler B, Wieland H, Rottmann O, Schmid RM, Schneider G, Kind A, Wolf E, Saur D, Schnieke A (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143(5):1173鈥?175. doi:10.鈥?053/鈥媕.鈥媑astro.鈥?012.鈥?7.鈥?10 PubMed View Article
    Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55(1):53鈥?4. doi:10.鈥?007/鈥媠13353-013-0182-9 PubMed View Article
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279鈥?84. doi:10.鈥?038/鈥媙bt.鈥?808 PubMed Central PubMed View Article
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi:10.鈥?126/鈥媠cience.鈥?172447 PubMed Central PubMed View Article
    Grabher C, Wittbrodt J (2008) Recent advances in meganuclease-and transposon-mediated transgenesis of medaka and zebrafish. Methods Mol Biol (Clifton, NJ) 461:521鈥?39. doi:10.鈥?007/鈥?78-1-60327-483-8_鈥?6 View Article
    Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Paques F, Duchateau P (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37(16):5405鈥?419. doi:10.鈥?093/鈥媙ar/鈥媑kp548 PubMed Central PubMed View Article
    Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. doi:10.鈥?038/鈥媙bt.鈥?909 PubMed Central
    Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3):372鈥?75. doi:10.鈥?038/鈥媍r.鈥?014.鈥?1 PubMed Central PubMed View Article
    Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108(29):12013鈥?2017. doi:10.鈥?073/鈥媝nas.鈥?106422108 PubMed Central PubMed View Article
    Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013a) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 70(16):2969鈥?983. doi:10.鈥?007/鈥媠00018-012-1204-1 PubMed View Article
    Hauschild-Quintern J, Petersen B, Queisser AL, Lucas-Hahn A, Schwinzer R, Niemann H (2013b) Gender non-specific efficacy of ZFN mediated gene targeting in pigs. Transgenic Res 22(1):1鈥?. doi:10.鈥?007/鈥媠11248-012-9647-6 PubMed View Article
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731鈥?34. doi:10.鈥?038/鈥媙bt.鈥?927 PubMed Central PubMed View Article
    Horzempa J, Shanks RM, Brown MJ, Russo BC, O鈥橠ee DM, Nau GJ (2010) Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless deletion mutants in Francisella tularensis. J Microbiol Methods 80(1):106鈥?08. doi:10.鈥?016/鈥媕.鈥媘imet.鈥?009.鈥?0.鈥?13 PubMed Central PubMed View Article
    Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699鈥?00. doi:10.鈥?038/鈥媙bt.鈥?939 PubMed View Article
    Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383鈥?94PubMed View Article
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471. doi:10.鈥?554/鈥媏Life.鈥?0471 PubMed Central PubMed View Article
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156鈥?160PubMed Central PubMed View Article
    Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251鈥?58. doi:10.鈥?038/鈥媙bt.鈥?517 PubMed View Article
    Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E (2013) Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 13:43. doi:10.鈥?186/鈥?472-6750-13-43 PubMed Central PubMed View Article
    Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011a) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39(1):359鈥?72. doi:10.鈥?093/鈥媙ar/鈥媑kq704 PubMed Central PubMed View Article
    Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011b) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315鈥?325. doi:10.鈥?093/鈥媙ar/鈥媑kr188 PubMed Central PubMed View Article
    Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ (2014) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation. doi:10.鈥?111/鈥媥en.鈥?2131
    Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847. doi:10.鈥?038/鈥媠rep02847 PubMed View Article
    Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565. doi:10.鈥?038/鈥媙comms3565 PubMed Central PubMed
    Loeber J, Pan FC, Pieler T (2009) Generation of transgenic frogs. Methods Mol Biol (Clifton NJ 561:65鈥?2. doi:10.鈥?007/鈥?78-1-60327-019-9_鈥? View Article
    Luo Y, Bolund L, Sorensen CB (2012) Pig gene knockout by rAAV-mediated homologous recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and Gottingen fibroblasts with slightly different target sequences. Transgenic Res 21(3):671鈥?76. doi:10.鈥?007/鈥媠11248-011-9563-1 PubMed View Article
    Maggert KA, Gong WJ, Golic KG (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol (Clifton NJ) 420:155鈥?74. doi:10.鈥?007/鈥?78-1-59745-583-1_鈥? View Article
    Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108(6):2623鈥?628. doi:10.鈥?073/鈥媝nas.鈥?019533108 PubMed Central PubMed View Article
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823鈥?26. doi:10.鈥?126/鈥媠cience.鈥?232033 PubMed Central PubMed View Article
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695鈥?01. doi:10.鈥?038/鈥媙bt1398 PubMed Central PubMed View Article
    Menoret S, Fontaniere S, Jantz D, Tesson L, Thinard R, Remy S, Usal C, Ouisse LH, Fraichard A, Anegon I (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27(2):703鈥?11. doi:10.鈥?096/鈥媐j.鈥?2-219907 PubMed View Article
    Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72(1):358鈥?61PubMed Central PubMed View Article
    Meyer M, de Angelis MH, Wurst W, Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107(34):15022鈥?5026. doi:10.鈥?073/鈥媝nas.鈥?009424107 PubMed Central PubMed View Article
    Mikkelsen M, Moller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol 21(2):169鈥?75PubMed View Article
    Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609鈥?614PubMed Central PubMed
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143鈥?48. doi:10.鈥?038/鈥媙bt.鈥?755 PubMed View Article
    Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104(9):3055鈥?060. doi:10.鈥?073/鈥媝nas.鈥?611478104 PubMed Central PubMed View Article
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.鈥?126/鈥媠cience.鈥?178817 PubMed View Article
    Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38(15):e152. doi:10.鈥?093/鈥媙ar/鈥媑kq512 PubMed Central PubMed View Article
    Orlowski J, Boniecki M, Bujnicki JM (2007) I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 23(5):527鈥?30. doi:10.鈥?093/鈥媌ioinformatics/鈥媌tm007 PubMed View Article
    Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313鈥?40. doi:10.鈥?146/鈥媋nnurev.鈥媌iochem.鈥?0.鈥?.鈥?13 PubMed View Article
    Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CB (2011) Species-specific variation in RELA underlies differences in NF-魏B activity: a potential role in African swine fever pathogenesis. J Virol 85(12):6008鈥?014. doi:10.鈥?128/鈥婮VI.鈥?0331-11 PubMed Central PubMed View Article
    Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809鈥?17PubMed View Article
    Petersen B, Lucas-Hahn A, Oropeza M, Hornen N, Lemme E, Hassel P, Queisser AL, Niemann H (2008) Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10(3):355鈥?62. doi:10.鈥?089/鈥媍lo.鈥?008.鈥?026 PubMed View Article
    Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27(22):4409鈥?415PubMed Central PubMed View Article
    Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147鈥?53. doi:10.鈥?007/鈥媠11248-014-9832-x PubMed Central PubMed View Article
    Puchta H (1999) Use of I-Sce I to induce DNA double-strand breaks in Nicotiana. Methods Mol Biol (Clifton, NJ) 113:447鈥?51. doi:10.鈥?385/鈥?-59259-675-4:鈥?47
    Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48(1鈥?):173鈥?82PubMed View Article
    Radding CM (1982) Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16:405鈥?37. doi:10.鈥?146/鈥媋nnurev.鈥媑e.鈥?6.鈥?20182.鈥?02201 PubMed View Article
    Renfer E, Amon-Hassenzahl A, Steinmetz PR, Technau U (2010) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci USA 107(1):104鈥?08. doi:10.鈥?073/鈥媝nas.鈥?909148107 PubMed Central PubMed View Article
    Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837鈥?841. doi:10.鈥?126/鈥媠cience.鈥?163600 PubMed Central PubMed View Article
    Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, Stoddard BL, Seligman LM (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34(17):4791鈥?800. doi:10.鈥?093/鈥媙ar/鈥媑kl645 PubMed Central PubMed View Article
    Rouet P, Smih F, Jasin M (1994a) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91(13):6064鈥?068PubMed Central PubMed View Article
    Rouet P, Smih F, Jasin M (1994b) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096鈥?106PubMed Central PubMed
    Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697鈥?98. doi:10.鈥?038/鈥媙bt.鈥?934 PubMed Central PubMed View Article
    Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30(17):3870鈥?879PubMed Central PubMed View Article
    Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399鈥?02. doi:10.鈥?038/鈥媙meth.鈥?857 PubMed View Article
    Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14(5):1121鈥?131PubMed Central PubMed View Article
    Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11鈥?7PubMed Central PubMed View Article
    Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23(24):5012鈥?019PubMed Central PubMed View Article
    Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361鈥?369PubMed Central PubMed View Article
    Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149. doi:10.鈥?093/鈥媙ar/鈥媑kl720 PubMed Central PubMed View Article
    Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R Jr, Stoddard BL, Seligman LM (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342(1):31鈥?1. doi:10.鈥?016/鈥媕.鈥媕mb.鈥?004.鈥?7.鈥?31 PubMed View Article
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786鈥?93. doi:10.鈥?038/鈥媙bt1317 PubMed View Article
    Takeuchi H, Georgiev O, Fetchko M, Kappeler M, Schaffner W, Egli D (2007) In vivo construction of transgenes in Drosophila. Genetics 175(4):2019鈥?028. doi:10.鈥?534/鈥媑enetics.鈥?06.鈥?65920 PubMed Central PubMed View Article
    Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110(41):16526鈥?6531. doi:10.鈥?073/鈥媝nas.鈥?310478110 PubMed Central PubMed View Article
    Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14(3):321鈥?27. doi:10.鈥?016/鈥媕.鈥媘ib.鈥?011.鈥?3.鈥?05 PubMed Central PubMed View Article
    Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695鈥?96. doi:10.鈥?038/鈥媙bt.鈥?940 PubMed View Article
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569鈥?76. doi:10.鈥?038/鈥媙bt.鈥?908 PubMed Central PubMed View Article
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646鈥?51. doi:10.鈥?038/鈥媙ature03556 PubMed View Article
    van den Heuvel M, Sorop O, Koopmans SJ, Dekker R, de Vries R, van Beusekom HM, Eringa EC, Duncker DJ, Danser AH, van der Giessen WJ (2012) Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol 302(1):H85鈥揌94. doi:10.鈥?152/鈥媋jpheart.鈥?0311.鈥?011 PubMed View Article
    Vasquez KM, Marburger K, Intody Z, Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA 98(15):8403鈥?410. doi:10.鈥?073/鈥媝nas.鈥?11009698 PubMed Central PubMed View Article
    Voytas DF, Joung JK (2009) Plant science. DNA binding made easy. Science 326(5959):1491鈥?492. doi:10.鈥?126/鈥媠cience.鈥?183604 PubMed View Article
    Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22(7):1316鈥?326. doi:10.鈥?101/鈥媑r.鈥?22879.鈥?11 PubMed Central PubMed View Article
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910鈥?18. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?013.鈥?4.鈥?25 PubMed Central PubMed View Article
    Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402(1):14鈥?8PubMed View Article
    Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M, Hayashida G, Asano Y, Takayanagi S, Arai Y, Umeyama K, Nagaya M, Hanazono Y, Nagashima H (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS ONE 8(10):e76478. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?076478 PubMed Central PubMed View Article
    Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O鈥橤orman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014a) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91(3):78. doi:10.鈥?095/鈥媌iolreprod.鈥?14.鈥?21723 PubMed View Article
    Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O鈥橤orman C, Walters EM, Murphy CN, Driver JP, Mileham A, McLaren D, Wells KD, Prather RS (2014b) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. doi:10.鈥?095/鈥媌iolreprod.鈥?14.鈥?21723 PubMed
    Whyte JJ, Prather RS (2011) Zinc finger nucleases to create custom-designed modifications in the swine (Sus scrofa) genome. J Anim Sci. doi:10.鈥?527/鈥媕as.鈥?011-4546 PubMed
    Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78(1):2. doi:10.鈥?002/鈥媘rd.鈥?1271 PubMed View Article
    Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331鈥?38. doi:10.鈥?038/鈥媙ature10886 PubMed View Article
    Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 35(17):5922鈥?933. doi:10.鈥?093/鈥媙ar/鈥媑km632 PubMed Central PubMed View Article
    Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. doi:10.鈥?038/鈥媍r.鈥?011.鈥?0
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370鈥?379. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?013.鈥?8.鈥?22 PubMed Central PubMed View Article
    Yu BJ, Kang KH, Lee JH, Sung BH, Kim MS, Kim SC (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 36(14):e84. doi:10.鈥?093/鈥媙ar/鈥媑kn359 PubMed Central PubMed View Article
    Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638鈥?640. doi:10.鈥?038/鈥媍r.鈥?011.鈥?53 PubMed Central PubMed View Article
  • 作者单位:Bjoern Petersen (1) (2)
    Heiner Niemann (1) (2)

    1. Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, 31535, Neustadt, Mariensee, Germany
    2. Rebirth, Cluster of Excellence, Hannover Medical School, Hannover, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Molecular Medicine
    Plant Genetics and Genomics
    Animal Genetics and Genomics
    Plant Sciences
    Human Genetics
  • 出版者:Springer Netherlands
  • ISSN:1573-9368
文摘
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700