Self-Assembled Peptide Nanotubes as an Etching Material for the Rapid Fabrication of Silicon Wires
详细信息    查看全文
  • 作者:Martin B. Larsen (1)
    Karsten B. Andersen (1)
    Winnie E. Svendsen (1)
    Jaime Castillo-León (1)
  • 关键词:Peptide nanotubes ; Peptide nanowires ; Self ; assembly ; Silicon wires ; Reactive ; ion etching ; Masking material ; Diphenylalanine
  • 刊名:BioNanoScience
  • 出版年:2011
  • 出版时间:June 2011
  • 年:2011
  • 卷:1
  • 期:1-2
  • 页码:31-37
  • 全文大小:455KB
  • 参考文献:1. de la Rica, R., & Matsui, H. (2010). Applications of peptide and protein-based materials in bionanotechnology. / Chemical Society Reviews, 39(9), 3499-509. doi:10.1039/b917574c . CrossRef
    2. Scanlon, S., & Aggeli, A. (2008). Self-assembling peptide nanotubes. / Nano Today, 3(3-), 22-0. CrossRef
    3. Yan, X. H., Zhu, P. L., Li, J. B. (2010). Self-assembly and application of diphenylalanine-based nanostructures. / Chemical Society Reviews, 39(6), 1877-890. doi:10.1039/b915765b . CrossRef
    4. Reches, M., & Gazit, E. (2006). Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. / Physical Biology, 3(1), S10–S19. doi:10.1088/1478-3975/3/1/s02 . CrossRef
    5. Castillo-León, J., Rodriguez-Trujillo, R., Gauthier, S., Jensen, A. C. ?., Svendsen, W. E. (2011). Micro-“factory-for self-assembled peptide nanostructures. / Microelectron Eng. doi:10.1016/j.mee.2010.12.023 .
    6. Andersen, K. B., Castillo-Leon, J., Hedstrom, M., Svendsen, W. E. (2011). Stability of diphenylalanine peptide nanotubes in solution. / Nanoscale, 3(3), 994-98. doi:10.1039/C0NR00734J . CrossRef
    7. Castillo, J., Tanzi, S., Dimaki, M., Svendsen, W. (2008). Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis. / Electrophoresis, 29(24), 5026-032. doi:10.1002/elps.200800260 . CrossRef
    8. Clausen, C. H., Jensen, J., Castillo, J., Dimaki, M., Svendsen, W. E. (2008). Qualitative mapping of structurally different dipeptide nanotubes. / Nano Letters, 8(11), 4066-069. doi:10.1021/nl801037k . CrossRef
    9. Reches, M., & Gazit, E. (2007). Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions. / Journal of Nanoscience and Nanotechnology, 7(7), 2239-245. doi:10.1166/jnn.2007.645 . CrossRef
    10. Diaz, J. A. C., & Cagin, T. (2010). Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes. / Nanotechnology. doi:10.1088/0957-4484/21/11/115703 .
    11. Ryu, J., & Park, C. B. (2009). High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. / Biotechnology and Bioengineering, 105(2), 221-30. doi:10.1002/bit.22544 . CrossRef
    12. Hayden, O., Agarwal, R., Lu, W. (2008). Semiconductor nanowire devices. / Nano Today, 3(5-), 12-2. CrossRef
    13. Yang, P., Yan, R., Fardy, M. (2010). Semiconductor nanowire: what’s next? / Nano Letters, 10(5), 1529-536. CrossRef
    14. Patolsky, F., Zheng, G. F., Lieber, C. M. (2006). Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. / Nature Protocols, 1(4), 1711-724. doi:10.1038/nprot.2006.227 . CrossRef
    15. Weiss, S. M., & Fauchet, P. M. (2006). Porous silicon one-dimensional photonic crystals for optical signal modulation. / IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1514-519. doi:10.1109/jstqe.2006.884083 . CrossRef
    16. Weiss, S. M., Haurylau, M., Fauchet, P. M. (2004). Silicon-based photonic bandgap modulators. In 2004 First IEEE International Conference on Group IV Photonics. pp. 171-73.
    17. Arnold, S. P., Prokes, S. M., Zaghloul, M. E. (2005). Localized growth and functionalization of silicon nanowires for MEMS sensor applications. In Oregan, F., Wegemer, C. (Eds.), Proceedings of the 2005 European Conference on Circuit Theory and Design, vol 3. pp. 397-00.
    18. Englander, O., Christensen, D., Kim, J., Lin, L. W. (2006). Post-processing techniques for the integration of silicon nanowires and MEMS. In MEMS 2006: 19th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. Proceedings: IEEE Micro Electro Mechanical Systems Workshop. pp. 930-33.
    19. Bandaru, P. R., & Pichanusakorn, P. (2010). An outline of the synthesis and properties of silicon nanowires. / Semiconductor Science and Technology, 25(2), 10.1088/0268-1242/25/2/024003. CrossRef
    20. Ozsun, O., Alaca, B. E., Leblebici, Y., Yalcinkaya, A. D., Yildiz, I., Yilmaz, M., et al. (2009). Monolithic integration of silicon nanowires with a microgripper. / Journal of Microelectronic Systems, 18(6), 1335-344. doi:10.1109/jmems.2009.2034340 . CrossRef
    21. Weber, J., Singhal, R., Zekri, S., Kumar, A. (2008). One-dimensional nanostructures: fabrication, characterisation and applications. / International Materials Reviews, 53(4), 235-55. doi:10.1179/174328008x348183 . CrossRef
    22. Colli, A., Fasoli, A., Pisana, S., Fu, Y., Beecher, P., Milne, W. I., et al. (2008). Nanowire lithography on silicon. / Nano Letters, 8(5), 1358-362. doi:10.1021/nl080033t . CrossRef
    23. Fellahi, O., Hadjersi, T., Maamache, M., Bouanik, S., Manseri, A. (2010). Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching. / Applied Surface Science, 257(2), 591-95. doi:10.1016/j.apsusc.2010.07.039 . CrossRef
    24. Abe, H., Yoneda, M., Fujlwara, N. (2008). Developments of plasma etching technology for fabricating semiconductor devices. / Japanese Journal of Applied Physics, 47(3), 1435-455. doi:10.1143/jjap.47.1435 . CrossRef
    25. Barlian, A. A., Park, W. T., Mallon, J. R., Rastegar, A. J., Pruitt, B. L. (2009). Review: semiconductor piezoresistance for microsystems. / Proceedings of the IEEE, 97(3), 513-52. CrossRef
    26. Esashi, M., & Ono, T. (2005). From MEMS to nanomachine. / Journal of Physics. D. Applied Physics, 38(13), R223–R230. doi:10.1088/0022-3727/38/13/r01 . CrossRef
    27. Fu, Y. Q., Colli, A., Fasoli, A., Luo, J. K., Flewitt, A. J., Ferrari, A. C., et al. (2009). Deep reactive ion etching as a tool for nanostructure fabrication. / Journal of Vacuum Science and Technology B, 27(3), 1520-526. doi:10.1116/1.3065991 . CrossRef
    28. Han, X. L., Larrieu, G., Dubois, E. (2010). Realization of vertical silicon nanowire networks with an ultra high density using a top-down approach. / Journal of Nanoscience and Nanotechnology, 10(11), 7423-427. doi:10.1166/jnn.2010.2841 . CrossRef
    29. Hirai, Y., Yabu, H., Matsuo, Y., Ijiro, K., Shimomura, M. (2010). Biomimetic bi-functional silicon nanospike-array structures prepared by using self-organized honeycomb templates and reactive ion etching. / Journal of Materials Chemistry, 20(48), 10804-0808. doi:10.1039/c0jm02423f . CrossRef
    30. Mehran, M., Sanaee, Z., Mohajerzadeh, S. (2010). Formation of silicon nanograss and microstructures on silicon using deep reactive ion etching. / Micro and Nano Letters, 5(6), 374-78. doi:10.1049/mnl.2010.0111 . CrossRef
    31. Strobel, S., Kirkendall, C., Chang, J. B., Berggren, K. K. (2010). Sub-10?nm structures on silicon by thermal dewetting of platinum. / Nanotechnology, 21(50), 7. doi:10.1088/0957-4484/21/50/505301 . CrossRef
    32. Ryu, J., & Park, C. B. (2008). High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. / Advanced Materials, 20(19), 3754-758. CrossRef
    33. Giannuzzi, L. A., & Stevie, F. A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. / Micron, 30(3), 197-04. CrossRef
    34. Korotcenkov, G., & Cho, B. K. (2010). Silicon porosification: state of the art. / Critical Reviews in Solid State and Materials Sciences, 35(3), 153-60. doi:10.1080/10408436.2010.495446 . CrossRef
    35. Tseng, A. A. (2004). Recent developments in micromilling using focused ion beam technology. / Journal of Micromechanics and Microengineering, 14(4), R15–R34. doi:10.1088/0960-1317/14/4/ro1 . CrossRef
  • 作者单位:Martin B. Larsen (1)
    Karsten B. Andersen (1)
    Winnie E. Svendsen (1)
    Jaime Castillo-León (1)

    1. Department of Micro and Nanotechnology, Technical University of Denmark, Building 345 east, 2800 Kgs, Lyngby, Denmark
  • ISSN:2191-1649
文摘
This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on clean silicon wafers, after which these biological nanostructures were exposed to an RIE etching process. Following this treatment, the structure of the remaining nanotubes and nanowires was analyzed by scanning electron microscopy (SEM). Important differences in the behavior of the nanotubes and the nanowires were observed after the RIE process. The nanotubes remained intact while the nanowires were destroyed by the RIE process. The instability of the peptide nanowires during this process was further confirmed with focused ion beam milling experiments. The PNTS could stand energetic argon ions for around 32?s while the PNWS resisted only 4?s before becoming milled. Based on these results, self-assembled PNTS were further used as an etching mask to fabricate silicon wires in a rapid and low-cost manner. The obtained silicon wires were subjected to structural and electrical characterization by SEM and I–V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin–streptavidin interaction in order to probe their potential in the development of biosensing devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700