Establishment of a reborn MMV-microarray technology: realization of microbiome analysis and other hitherto inaccessible technologies
详细信息    查看全文
  • 作者:Harshita Sharma (1)
    Yasunori Kinoshita (1)
    Seiichi Fujiu (1) (2)
    Shota Nomura (1)
    Mizuho Sawada (2)
    Shamim Ahmed (1) (6)
    Masaki Shibuya (3)
    Kosaku Shirai (3)
    Syota Takamatsu (4)
    Tsuyoshi Watanabe (4)
    Hitoshi Yamazaki (5)
    Ryohei Kamiyama (1)
    Tetsuya Kobayashi (1)
    Hidenao Arai (1)
    Miho Suzuki (1)
    Naoto Nemoto (1)
    Ki Ando (1) (7)
    Hidekazu Uchida (1)
    Koichiro Kitamura (2)
    Osamu Takei (3)
    Koichi Nishigaki (1)

    1. Department of Functional Materials Science
    ; Graduate School of Science and Engineering ; Saitama University ; 255 Shimo-okubo ; Saitama ; 338-8570 ; Japan
    2. Janusys Corporation
    ; Saitama Industrial Technology Center ; 3-12-18 Kamiaoki ; Kawaguchi ; Saitama ; 334-0844 ; Japan
    6. Department of Biochemistry and Molecular Biology
    ; Shahjalal University of Science and Technology ; Sylhet ; Bangladesh
    3. Lifetech Co.
    ; Ltd ; 4074 Miyadera ; Iruma City ; Saitama ; 358-0014 ; Japan
    4. Enplas Corporation
    ; 2-30-1 Namiki ; Kawaguchi City ; Saitama ; 332-0034 ; Japan
    5. Finetech Corporation
    ; 1-7-1 ; Asagaya-minami Suginami-ku ; Tokyo ; Japan
    7. Department of Electrical and Electronic Engineering
    ; Tokyo Denki University ; 5 Senjyu-Asahi-cho ; Adachi-ku ; Tokyo ; 120-8551 ; Japan
  • 关键词:Microarray ; Multi ; parallel reactions ; Multi ; conditioner ; Lysozyme crystallization ; Microbiome analysis
  • 刊名:BMC Biotechnology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,696 KB
  • 参考文献:1. Sundberg, SA (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11: pp. 47-53 CrossRef
    2. Kornienko, O, Lacson, R, Kunapuli, P, Schneeweis, J, Hoffman, I, Smith, T, Alberts, M, Inglese, J, Strulovici, B (2004) Miniaturization of whole live cell-based GPCR assays using microdispensing and detection systems. J Biomol Screen 9: pp. 186-195 CrossRef
    3. Jang, JS, Simon, VA, Feddersen, RM, Rakhshan, F, Schultz, DA, Zschunke, MA, Lingle, WL, Kolbert, CP, Jen, J (2011) Quantitative miRNA expression analysis using Fluidigm microfluidics dynamic arrays. BMC Genomics 12: pp. 144 CrossRef
    4. van Doorn, R, Klerks, MM, van Gent-Pelzer, MPE, Speksnijder, AGCL, Kowalchuk, GA, Schoen, CD (2009) Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays. Appl Environ Microbiol 75: pp. 7253-7260 CrossRef
    5. Didelot, A, Kotsopoulos, SK, Lupo, A, Pekin, D, Li, X, Atochin, I, Srinivasan, P, Zhong, Q, Olson, J, Link, DR, Laurent-Puig, P, Blons, H, Hutchison, JB, Taly, V (2013) Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem 59: pp. 815-823 CrossRef
    6. Baker, M (2012) Digital PCR hits its stride. Nat Methods 9: pp. 541-544 CrossRef
    7. Vyawahare, S, Griffiths, AD, Merten, CA (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17: pp. 1052-1065 CrossRef
    8. Srisa-Art, M, de Mello, AJ, Edel, JB (2007) High-throughput DNA droplet assays using picoliter reactor volumes. Anal Chem 79: pp. 6682-6689 CrossRef
    9. Gan, R, Yamanaka, Y, Kojima, T, Nakano, H (2008) Microbeads display of proteins using emulsion PCR and cell-free protein synthesis. Biotechnol Prog 24: pp. 1107-1114 CrossRef
    10. Boulanger, J, Muresan, L, Tiemann-Boege, I (2012) Massively parallel haplotyping on microscopic beads for the high-throughput phase analysis of single molecules. PLoS One 7: pp. e36064 CrossRef
    11. Kim, DS, Lee, KC, Kwon, TH, Lee, SS (2002) Micro-channel filling flow considering surface tension effect. J Micromech Microeng 12: pp. 236 CrossRef
    12. Zhang, YH, Ozdemir, P (2009) Microfluidic DNA amplification - a review. Anal Chim Acta 63: pp. 115-125 CrossRef
    13. Delamarche, E, Juncker, D, Schmid, H (2005) Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater 17: pp. 2911-2933 CrossRef
    14. Lilliehorn, T, Nilsson, M, Simu, U, Johansson, S, Almqvist, M, Nilsson, J, Laurell, T (2005) Dynamic arraying of microbeads for bioassays in microfluidic channels. Sensor Actuator B Chem 106: pp. 851-858 CrossRef
    15. Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, LA, Berka, J, Braverman, MS, Chen, YJ, Chen, Z, Dewell, SB, Du, L, Fierro, JM, Gomes, XV, Godwin, BC, He, W, Helgesen, S, Ho, CH, Irzyk, GP, Jando, SC, Alenquer, MLI, Jarvie, TP, Jirage, KB, Kim, JB, Knight, JR, Lanza, JR, Leamon, JH, Lefkowitz, SM, Lei, M, Li, J (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: pp. 376-380
    16. Salimullah, M, Mori, M, Nishigaki, K (2006) High-throughput three-dimensional gel electrophoresis for versatile utilities: a stacked slice-gel system for separation and reactions (4SR). Genomics Proteomics Bioinformatics 4: pp. 26-33 CrossRef
    17. Kinoshita, Y, Tayama, T, Kitamura, K, Salimullah, M, Uchida, H, Suzuki, M, Husimi, Y, Nishigaki, K (2010) Novel concept microarray enabling PCR and multistep reactions through pipette-free aperture-to-aperture parallel transfer. BMC Biotechnol 10: pp. 71 CrossRef
    18. Dill, K, McShea, A (2005) Recent advances in microarrays. Drug Discov Today Technol 2: pp. 261-266 CrossRef
    19. Zhou, SM, Cheng, L, Guo, SJ, Zhu, H, Tao, SC (2012) Functional protein microarray: an ideal platform for investigating protein binding property. Front Biol 7: pp. 336-349 CrossRef
    20. Kim, J, Crooks, RM (2007) Replication of DNA microarrays prepared by in situ oligonucleotide polymerization and mechanical transfer. Anal Chem 79: pp. 7267-7274 CrossRef
    21. Hekmat, D, Hebel, D, Joswig, S, Schmidt, M, Weuster-Botz, D (2007) Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotechnol Lett 29: pp. 1703-1711 CrossRef
    22. Yatsunenko, T, Rey, FE, Manary, MJ, Trehan, I, Dominguez-Bello, MG, Contreras, M, Magris, M, Hidalgo, G, Baldassano, RN, Anokhin, AP, Heath, AC, Warner, B, Reeder, J, Kuczynski, J, Caporaso, JG, Lozupone, CA, Lauber, C, Clemente, JC, Knights, D, Knight, R, Gordon, JI (2012) Human gut microbiome viewed across age and geography. Nature 486: pp. 222-227
    23. Liu, B, Faller, LL, Klitgord, N, Mazumdar, V, Ghodsi, M, Sommer, DD, Gibbons, TR, Treangen, TJ, Chang, YC, Li, S, Stine, OC, Hasturk, H, Kasif, S, Segre, D, Pop, M, Amar, S (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS ONE 7: pp. e37919 CrossRef
    24. Wang, J, Qi, J, Zhao, H, He, S, Zhang, Y, Wei, S, Zhao, F (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 3: pp. 1843
    25. Nishigaki, K, Naimuddin, M, Hamano, K (2000) Genome profiling: a realistic solution for genotype-based identification of species. J Biochem 128: pp. 107-112 CrossRef
    26. Kouduka, M, Matsuoka, A, Nishigaki, K (2006) Acquisition of genome information from single-celled unculturable organisms (radiolaria) by exploiting genome profiling (GP). BMC Genomics 7: pp. 135 CrossRef
    27. Sakuma, Y, Nishigaki, K (1994) Computer prediction of general PCR products based on dynamical solution structures of DNA. J Biochem 116: pp. 736-741
    28. Kurimoto, K, Yabuta, Y, Ohinata, Y, Ono, Y, Uno, KD, Yamada, RG, Ueda, HR, Saitou, M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34: pp. e42 CrossRef
    29. Frumkin, D, Wasserstrom, A, Itzkovitz, S, Harmelin, A, Rechavi, G, Shapiro, E (2008) Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnol 8: pp. 17 CrossRef
    30. White, AK, Heyries, KA, Doolin, C, VanInsberghe, M, Hansen, CL (2013) High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem 85: pp. 7182-7190 CrossRef
    31. Naimuddin, M, Kurazono, T, Nishigaki, K (2002) Commonly conserved genetic fragments revealed by genome profiling can serve as tracers of evolution. Nucleic Acids Res 30: pp. e42 CrossRef
    32. Kouduka, M, Sato, D, Komori, M, Kikuchi, M, Miyamoto, K, Kosaku, A, Naimuddin, M, Matsuoka, A, Nishigaki, K (2006) A solution for universal classification of species based on genomic DNA. Int J Plant Genomics 2007: pp. Article ID 27894
    33. Ahmed, S, Komori, M, Tsuji-Ueno, S, Suzuki, M, Kosaku, A, Miyamoto, K, Nishigaki, K (2011) Genome profiling (GP) method based classification of insects: congruence with that of classical phenotype-based one. PLoS One 6: pp. e23963 CrossRef
    34. Hamano, K, Tsuji-Ueno, S, Tanaka, R, Suzuki, M, Nishimura, K, Nishigaki, K (2012) Genome profiling (GP) as an effective tool for monitoring culture collections: a case study with Trichosporon. J Microbiol Methods 89: pp. 119-128 CrossRef
    35. Judge, RA, Jacobs, RS, Frazier, T, Snell, EH, Pusey, ML (1999) The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. Biophys J 77: pp. 1585-1593 CrossRef
    36. Hebel, D, Urdingen, M, Hekmat, D, Weuster-Botz, D (2013) Development and scale up of high-yield crystallization processes of lysozyme and lipase using additives. Cryst Growth Des 13: pp. 2499-2506 CrossRef
    37. Li, F, Robinson, H, Yeung, ES (2005) Automated high-throughput nanoliter-scale protein crystallization screening. Anal Bioanal Chem 383: pp. 1034-1041 CrossRef
    38. Rickard, AH, Gilbert, P, High, NJ, Kolenbrander, PE, Handley, PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11: pp. 94-100 CrossRef
    39. Nagaoka, S, Hojo, K, Murata, S, Mori, T, Ohshima, T, Maeda, N (2008) Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett 281: pp. 183-189 CrossRef
    40. Naimuddin, M, Kurazono, T, Zhang, Y, Watanabe, T, Yamaguchi, M, Nishigaki, K (2000) Species-identification dots: a potent tool for developing genome microbiology. Gene 261: pp. 243-250 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background With the accelerating development of bioscience, the problem of research cost has become important. We previously devised and developed a novel concept microarray with manageable volumes (MMV) using a soft gel. It demonstrated the great potential of the MMV technology with the examples of 1024-parallel-cell culture and PCR experiments. However, its full potential failed to be expressed, owing to the nature of the material used for the MMV chip. Results In the present study, by developing plastic-based MMVs and associated technologies, we introduced novel technologies such as C2D2P (in which the cells in each well are converted from DNA to protein in 1024-parallel), NGS-non-dependent microbiome analysis, and other powerful applications. Conclusions The reborn MMV-microarray technology has proven to be highly efficient and cost-effective (with approximately 100-fold cost reduction) and enables us to realize hitherto unattainable technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700