Material removal of glass by magnetorheological fluid jet
详细信息    查看全文
  • 作者:Wook-Bae Kim (1)
    Eunseok Nam (2)
    Byung-Kwon Min (2)
    Doo-Sun Choi (3)
    Tae-Jin Je (3)
    Eun-Chae Jeon (3)

    1. Department of Mechanical Design Engineering
    ; Korea Polytechnic University ; 237 ; Sangidaehak-ro ; Siheung-si ; Gyeonggi-do ; 429-793 ; South Korea
    2. School of Mechanical Engineering
    ; Yonsei University ; 50 ; Yonsei-ro ; Seodaemun-gu ; Seoul ; 120-749 ; South Korea
    3. Nano-Convergence Mechanical Systems Research Division
    ; Korea Institute of Machinery and Materials (KIMM) ; Daejeon ; 305-343 ; South Korea
  • 关键词:Glass ; Granular flow ; Magnetorheological fluid jet ; Polishing ; Surface finishing ; Surface roughness
  • 刊名:International Journal of Precision Engineering and Manufacturing
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:16
  • 期:4
  • 页码:629-637
  • 全文大小:1,754 KB
  • 参考文献:1. F盲hnle, O. W., Brug, H. V., Frankena, H. J. (1998) Fluid Jet Polishing of Optical Surfaces. Applied Optics 37: pp. 6771-6773 CrossRef
    2. Jafar, R. H. M., Spelt, J., Papini, M. (2013) Surface Roughness and Erosion Rate of Abrasive Jet Micro-Machined Channels: Experiments and Analytical Model. Wear 303: pp. 138-145 CrossRef
    3. Slikkerveer, P., Bouten, P., Haas, F. (2000) High Quality Mechanical Etching of Brittle Materials by Powder Blasting. Sensors and Actuators A: Physical 85: pp. 296-303 CrossRef
    4. Finnie, I. (1960) Erosion of Surfaces by Solid Particles. Wear 3: pp. 87-103 CrossRef
    5. Hutchings, I. M., 鈥淒uctile-Brittle Transitions and Wear Maps for the Erosion and Abrasion of Brittle Materials,鈥?Journal of Physics D: Applied Physics, Vol. 25, No. 1A, pp. A212鈥揂221, 1992.
    6. Buijs, M., Pasmans, J. (1995) Erosion of Glass by Alumina Particles: Transitions and Exponents. Wear 184: pp. 61-65 CrossRef
    7. Bousser, E., Martinu, L., Klemberg-Sapieha, J. (2013) Effect of Erodent Properties on the Solid Particle Erosion Mechanisms of Brittle Materials. Journal of Materials Science 48: pp. 5543-5558 CrossRef
    8. Verspui, M. A., Slikkerveer, P. J., Skerka, G. J. E., Oomen, I., With, G. (1998) Validation of the Erosion Map for Spherical Particle Impacts on Glass. Wear 215: pp. 77-82 CrossRef
    9. Wensink, H., Schlautmann, S., Goedbloed, M. H., Elwenspoek, M. C. (2002) Fine Tuning the Roughness of Powder Blasted Surfaces. Journal of Micromechanics and Microengineering 12: pp. 616-620 CrossRef
    10. Jafar, R. H. M., Spelt, J. K., Papini, M. (2013) Numerical Simulation of Surface Roughness and Erosion Rate of Abrasive Jet Micro- Machined Channels. Wear 303: pp. 302-312 CrossRef
    11. Liu, H., Wang, J., Huang, C. (2008) Abrasive Liquid Jet as a Flexible Polishing Tool. International Journal of Materials and Product Technology 31: pp. 2-13 CrossRef
    12. Sooraj, V. and Radhakrishnan, V., 鈥淓lastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces,鈥?Journal of Manufacturing Science and Engineering, Vol. 135, No. 5, Paper No. 051019, 2013.
    13. Kordonski, W., Shorey, A., Tricard, M. (2005) Precision Finishing with Magnetorheological (MR) Jet Technology. Proc. of SPIE TD03: pp. 1-3
    14. Kordonski, W. I., Shorey, A. B., Tricard, M. (2006) Magnetorheological Jet (MR JetTM) Finishing Technology. Journal of Fluids Engineering 128: pp. 20-26 CrossRef
    15. Kordonski, W. I., Jacobs, S. D. (1996) Magnetorheological Finishing. International Journal of Modern Physics B 10: pp. 2837-2848 CrossRef
    16. Jacobs, S. D., 鈥淢RF with Adjustable pH,鈥?Proc. of SPIE, Vol. 8169, 2011.
    17. Shorey, A. B., Kwong, K. M., Johnson, K. M., Jacobs, S. D. (2000) Nanoindentation Hardness of particles Used in Magnetorheological Finishing (MRF). Applied Optics 39: pp. 5194-5204 CrossRef
    18. Sidpara, A., Jain, V. K. (2012) Experimental Investigations into Surface Roughness and Yield Stress in Magnetorheological Fluid based Nano-Finishing Process. Int. J. Precis. Eng. Manuf. 13: pp. 855-860 CrossRef
    19. Kim, W. B., Lee, S. H., Min, B. K. (2004) Surface Finishing and Evaluation of Three-Dimensional Silicon Microchannel using Magnetorheological Fluid. Journal of Manufacturing Science and Engineering 126: pp. 772-778 CrossRef
    20. Beaucamp, A., Namba, Y., Freeman, R. (2012) Dynamic Multiphase Modeling and Optimization of Fluid Jet Polishing Process. CIRP Annals-Manufacturing Technology 61: pp. 315-318 CrossRef
    21. Gnanavelu, A., Kapur, N., Neville, A., Flores, J., Ghorbani, N. (2011) A Numerical Investigation of a Geometry Independent Integrated Method to Predict Erosion Rates in Slurry Erosion. Wear 271: pp. 712-719 CrossRef
    22. Clark, H. M., Burmeister, L. (1992) The Influence of the Squeeze Film on Particle Impact Velocities in Erosion. International Journal of Impact Engineering 12: pp. 415-426 CrossRef
    23. Turenne, S., Fiset, M., Masounave, J. (1989) The Effect of Sand Concentration on the Erosion of Materials by a Slurry Jet. Wear 133: pp. 95-106 CrossRef
    24. Matou拧ek, V. (2005) Research Developments in Pipeline Transport of Settling Slurries. Powder Technology 156: pp. 43-51 CrossRef
    25. Hunt, M. L., Zenit, R., Campbell, C. S., Brennen, C. E. (2002) Revisiting the 1954 Suspension Experiments of RA Bagnold. Journal of Fluid Mechanics 452: pp. 1-24 CrossRef
    26. Rabinowicz, E., Dunn, L. A., Russell, P. G. (1961) A Study of Abrasive Wear under Three-Body Conditions. Wear 4: pp. 345-355 CrossRef
    27. Jana, S. C., Kapoor, B., Acrivos, A. (1995) Apparent Wall Slip Velocity Coefficients in Concentrated Suspensions of Noncolloidal Particles. Journal of Rheology 39: pp. 1123-1132 CrossRef
    28. Bagnold, R. A. (1954) Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proc. of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 225: pp. 49-63 CrossRef
    29. Coussot, P., Ancey, C. (1999) Rheophysical Classification of Concentrated Suspensions and Granular Pastes. Physical Review E 59: pp. 4445-4457 CrossRef
    30. Engin, T., Evrensel, C., Gordaninejad, F. (2005) Numerical Simulation of Laminar Flow of Water-based Magneto-Rheological Fluids in Microtubes with Wall Roughness Effect. International Communications in Heat and Mass Transfer 32: pp. 1016-1025 CrossRef
    31. Kristiawan, M., Meslem, A., Nastase, I., Sobolik, V. (2012) Wall Shear Rates and Mass Transfer in Impinging Jets: Comparison of Circular Convergent and Cross-Shaped Orifice Nozzles. International Journal of Heat and Mass Transfer 55: pp. 282-293 CrossRef
    32. Kim, W. W., Kim, W. B. (2011) Machining Performance of Optical Glass with Magnetorheological Fluid Jet Polishing. J. Korean Soc. Precis. Eng. 28: pp. 929-935
    33. Stachowiak, G. W., Batchelor, A. W. (2001) Engineering Tribology. Butterworth-Heinemann. pp. 483-523
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Materials Science
  • 出版者:Korean Society for Precision Engineering, in co-publication with Springer Verlag GmbH
  • ISSN:2005-4602
文摘
Magnetorheological (MR) fluid jet polishing is a material removal process for precision products such as optical elements. It is characterized by a jet flow that is stabilized by a magnetic field, and a highly predictable machining spot. The behavior of the particles in an MR fluid slurry near a target wall surface is conceptually described. In experiments with a BK7 glass specimen, various removal spots are created by impingement of MR fluid jets at velocities of 10~30 m/s, using MR fluids of different compositions, and different processing durations. The tangential MR fluid flow along the part surface is assumed to be responsible for material removal, and theoretical models for the prediction of material removal are developed, using the conventional wear model and granular flow theory. The constitutive relation between the shear stress and the shear rate changes as the jet velocity increases, which has a critical effect on the behavior of material removal. CFD analysis is performed to calculate the wall shear rate. The proposed models agree with the experimental results with respect to the distribution of the material removal rate. Additionally, the surface topographies of polished parts are discussed, with regards to the particle behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700