miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities
详细信息    查看全文
  • 作者:Ting-Yu Chang (27)
    Tse-Shun Huang (27) (28)
    Hsei-Wei Wang (27) (29) (30)
    Shing-Jyh Chang (31)
    Hung-Hao Lo (27)
    Ya-Lin Chiu (27)
    Yen-Li Wang (27)
    Chung-Der Hsiao (32)
    Chin-Han Tsai (31)
    Chia-Hao Chan (31)
    Ren-In You (33)
    Chun-Hsien Wu (34)
    Tsung-Neng Tsai (34)
    Shu-Meng Cheng (34)
    Cheng-Chung Cheng (34)

    27. Institute of Microbiology and Immunology
    ; National Yang-Ming University ; Taipei ; Taiwan
    28. Institute of Engineering in Medicine
    ; UC San Diego ; La Jolla ; USA
    29. Genome Research Center
    ; National Yang-Ming University ; Taipei ; Taiwan
    30. Department of Education and Research
    ; Taipei City Hospital ; Taipei ; Taiwan
    31. Department of Obstetrics and Gynecology
    ; Hsin-Chu Mackay Memorial Hospital ; Hsinchu ; Taiwan
    32. Department of Bioscience Technology
    ; Chung Yuan Christian University ; Chung-Li ; Taiwan
    33. Department of Laboratory Medicine and Biotechnology
    ; College of Medicine ; Tzu-Chi University ; Hualien ; Taiwan
    34. Division of Cardiology
    ; Department of Internal Medicine ; Tri-Service General Hospital ; National Defense Medical Center ; Taipei ; Taiwan
  • 关键词:Endothelial progenitor cell ; smRNA ; seq ; Circulating microRNA ; Coronary artery disease ; MicroRNA ; 221/222
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,537 KB
  • 参考文献:1. Werner, N, Kosiol, S, Schiegl, T, Ahlers, P, Walenta, K, Link, A, Bohm, M, Nickenig, G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353: pp. 999-1007 CrossRef
    2. Grisar, JC, Haddad, F, Gomari, FA, Wu, JC (2011) Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med 5: pp. 731-744 CrossRef
    3. Asahara, T, Murohara, T, Sullivan, A, Silver, M, van der Zee, R, Li, T, Witzenbichler, B, Schatteman, G, Isner, JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: pp. 964-967 CrossRef
    4. Reyes, M, Dudek, A, Jahagirdar, B, Koodie, L, Marker, PH, Verfaillie, CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109: pp. 337-346 CrossRef
    5. Real, C, Caiado, F, Dias, S (2008) Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do?. Cardiovasc Hematol Disord Drug Targets 8: pp. 185-193 CrossRef
    6. Hristov, M, Erl, W, Weber, PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13: pp. 201-206 CrossRef
    7. Briasoulis, A, Tousoulis, D, Antoniades, C, Stefanadis, C, Papageorgiou, N (2010) The role of endothelial progenitor cells in vascular repair after arterial injury and atherosclerotic plaque development. Cardiovasc Ther 29: pp. 125-139 CrossRef
    8. Jialal, I, Devaraj, S, Singh, U, Huet, BA (2010) Decreased number and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: implications for increased cardiovascular risk. Atherosclerosis 211: pp. 297-302 CrossRef
    9. Critser, PJ, Voytik-Harbin, SL, Yoder, MC (2011) Isolating and defining cells to engineer human blood vessels. Cell Prolif 44: pp. 15-21 CrossRef
    10. Yoder, MC (2013) Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 91: pp. 285-295 CrossRef
    11. Cheng, CC, Chang, SJ, Chueh, YN, Huang, TS, Huang, PH, Cheng, SM, Tsai, TN, Chen, JW, Wang, HW (2013) Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14: pp. 182 CrossRef
    12. Croce, CM, Calin, GA (2005) miRNAs, cancer, and stem cell division. Cell 122: pp. 6-7 CrossRef
    13. Lim, LP, Lau, NC, Garrett-Engele, P, Grimson, A, Schelter, JM, Castle, J, Bartel, DP, Linsley, PS, Johnson, JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: pp. 769-773 CrossRef
    14. Wang, QZ, Xu, W, Habib, N, Xu, R (2009) Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 9: pp. 572-594 CrossRef
    15. Brase, JC, Wuttig, D, Kuner, R, Sultmann, H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9: pp. 306 CrossRef
    16. Iguchi, H, Kosaka, N, Ochiya, T (2010) Versatile applications of microRNA in anti-cancer drug discovery: from therapeutics to biomarkers. Curr Drug Discov Technol 7: pp. 95-105 CrossRef
    17. Poliseno, L, Tuccoli, A, Mariani, L, Evangelista, M, Citti, L, Woods, K, Mercatanti, A, Hammond, S, Rainaldi, G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108: pp. 3068-3071 CrossRef
    18. Kuehbacher, A, Urbich, C, Dimmeler, S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29: pp. 12-15 CrossRef
    19. Minami, Y, Satoh, M, Maesawa, C, Takahashi, Y, Tabuchi, T, Itoh, T, Nakamura, M (2009) Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39: pp. 359-367 CrossRef
    20. Zhang, Q, Kandic, I, Kutryk, MJ (2011) Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun 405: pp. 42-46 CrossRef
    21. Cheng, CC, Lo, HH, Huang, TS, Cheng, YC, Chang, ST, Chang, SJ, Wang, HW (2012) Genetic module and miRNome trait analyses reflect the distinct biological features of endothelial progenitor cells from different anatomic locations. BMC Genomics 13: pp. 447 CrossRef
    22. Wang, HW, Huang, TS, Lo, HH, Huang, PH, Lin, CC, Chang, SJ, Liao, KH, Tsai, CH, Chan, CH, Tsai, CF, Cheng, YC, Chiu, YL, Tsai, TN, Cheng, CC, Cheng, SM (2014) Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease. Arterioscler Thromb Vasc Biol 34: pp. 857-869 CrossRef
    23. Plummer, PN, Freeman, R, Taft, RJ, Vider, J, Sax, M, Umer, BA, Gao, D, Johns, C, Mattick, JS, Wilton, SD, Ferro, V, McMillan, NA, Swarbrick, A, Mittal, V, Mellick, AS (2013) MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res 73: pp. 341-352 CrossRef
    24. Goff, LA, Davila, J, Swerdel, MR, Moore, JC, Cohen, RI, Wu, H, Sun, YE, Hart, RP (2009) Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS One 4: pp. e7192 CrossRef
    25. Bar, M, Wyman, SK, Fritz, BR, Qi, J, Garg, KS, Parkin, RK, Kroh, EM, Bendoraite, A, Mitchell, PS, Nelson, AM, Ruzzo, WL, Ware, C, Radich, JP, Gentleman, R, Ruohola-Baker, H, Tewari, M (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26: pp. 2496-2505 CrossRef
    26. Morin, RD, O鈥機onnor, MD, Griffith, M, Kuchenbauer, F, Delaney, A, Prabhu, AL, Zhao, Y, McDonald, H, Zeng, T, Hirst, M, Eaves, CJ, Marra, MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18: pp. 610-621 CrossRef
    27. Skreka, K, Schafferer, S, Nat, IR, Zywicki, M, Salti, A, Apostolova, G, Griehl, M, Rederstorff, M, Dechant, G, Huttenhofer, A (2012) Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Res 40: pp. 6001-6015 CrossRef
    28. Bissels, U, Wild, S, Tomiuk, S, Hafner, M, Scheel, H, Mihailovic, A, Choi, YH, Tuschl, T, Bosio, A (2011) Combined characterization of microRNA and mRNA profiles delineates early differentiation pathways of CD133+ and CD34+ hematopoietic stem and progenitor cells. Stem Cells 29: pp. 847-857 CrossRef
    29. Yoo, JK, Kim, J, Choi, SJ, Noh, HM, Kwon, YD, Yoo, H, Yi, HS, Chung, HM, Kim, JK (2012) Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev 21: pp. 2049-2057 CrossRef
    30. Chen, YH, Lin, SJ, Lin, FY, Wu, TC, Tsao, CR, Huang, PH, Liu, PL, Chen, YL, Chen, JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56: pp. 1559-1568 CrossRef
    31. Wu, YH, Hu, TF, Chen, YC, Tsai, YN, Tsai, YH, Cheng, CC, Wang, HW (2011) The manipulation of miRNA-gene regulatory networks by KSHV induces endothelial cell motility. Blood 118: pp. 2896-2905 CrossRef
    32. Chen, C, Ridzon, DA, Broomer, AJ, Zhou, Z, Lee, DH, Nguyen, JT, Barbisin, M, Xu, NL, Mahuvakar, VR, Andersen, MR, Lao, KQ, Livak, KJ, Guegler, KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: pp. e179 CrossRef
    33. Cheng, WC, Chung, IF, Huang, TS, Chang, ST, Sun, HJ, Tsai, CF, Liang, ML, Wong, TT, Wang, HW (2013) YM500: a small RNA sequencing (smRNA-seq) database for microRNA research. Nucleic Acids Res 41: pp. D285-D294 CrossRef
    34. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    35. Hsieh, JY, Huang, TS, Cheng, SM, Lin, WS, Tsai, TN, Lee, OK, Wang, HW (2013) miR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Res 41: pp. 9753-9763 CrossRef
    36. Goretti, E, Rolland-Turner, M, Leonard, F, Zhang, L, Wagner, DR, Devaux, Y (2013) MicroRNA-16 affects key functions of human endothelial progenitor cells. J Leukoc Biol 93: pp. 645-655 CrossRef
    37. Cui, Y, Han, Z, Hu, Y, Song, G, Hao, C, Xia, H, Ma, X (2012) MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 227: pp. 772-783 CrossRef
    38. Sun, X, He, S, Wara, AK, Icli, B, Shvartz, E, Tesmenitsky, Y, Belkin, N, Li, D, Blackwell, TS, Sukhova, GK, Croce, K, Feinberg, MW (2014) Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res 114: pp. 32-40 CrossRef
    39. Nicoli, S, Knyphausen, CP, Zhu, LJ, Lakshmanan, A, Lawson, ND (2012) miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 22: pp. 418-429 CrossRef
    40. Fichtlscherer, S, De Rosa, S, Fox, H, Schwietz, T, Fischer, A, Liebetrau, C, Weber, M, Hamm, CW, Roxe, T, Muller-Ardogan, M, Bonauer, A, Zeiher, AM, Dimmeler, S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107: pp. 677-684 CrossRef
    41. Diehl, P, Fricke, A, Sander, L, Stamm, J, Bassler, N, Htun, N, Ziemann, M, Helbing, T, El-Osta, A, Jowett, JB, Peter, K (2012) Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 93: pp. 633-644 CrossRef
    42. Vasa, M, Fichtlscherer, S, Aicher, A, Adler, K, Urbich, C, Martin, H, Zeiher, AM, Dimmeler, S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: pp. E1-E7 CrossRef
    43. Briguori, C, Testa, U, Riccioni, R, Colombo, A, Petrucci, E, Condorelli, G, Mariani, G, D鈥橝ndrea, D, De Micco, F, Rivera, NV, Puca, AA, Peschle, C (2010) Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. Faseb J 24: pp. 1981-1988 CrossRef
    44. Fuchs, S, Dohle, E, Kolbe, M, Kirkpatrick, CJ (2010) Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. Adv Biochem Eng Biotechnol 123: pp. 201-217
    45. Yang, WH, Lan, HY, Huang, CH, Tai, SK, Tzeng, CH, Kao, SY, Wu, KJ, Hung, MC, Yang, MH (2012) RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14: pp. 366-374 CrossRef
    46. Maeng, YS, Choi, HJ, Kwon, JY, Park, YW, Choi, KS, Min, JK, Kim, YH, Suh, PG, Kang, KS, Won, MH, Kim, YM, Kwon, YG (2009) Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood 113: pp. 233-243 2891" target="_blank" title="It opens in new window">CrossRef
    47. Wang, Z, Gerstein, M, Snyder, M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: pp. 57-63 CrossRef
    48. Lipinski, MJ, Biondi-Zoccai, GG, Abbate, A, Khianey, R, Sheiban, I, Bartunek, J, Vanderheyden, M, Kim, HS, Kang, HJ, Strauer, BE, Vetrovec, GW (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50: pp. 1761-1767 CrossRef
    49. Losordo, DW, Schatz, RA, White, CJ, Udelson, JE, Veereshwarayya, V, Durgin, M, Poh, KK, Weinstein, R, Kearney, M, Chaudhry, M, Burg, A, Eaton, L, Heyd, L, Thorne, T, Shturman, L, Hoffmeister, P, Story, K, Zak, V, Dowling, D, Traverse, JH, Olson, RE, Flanagan, J, Sodano, D, Murayama, T, Kawamoto, A, Kusano, KF, Wollins, J, Welt, F, Shah, P, Soukas, P (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115: pp. 3165-3172 CrossRef
    50. Felli, N, Fontana, L, Pelosi, E, Botta, R, Bonci, D, Facchiano, F, Liuzzi, F, Lulli, V, Morsilli, O, Santoro, S, Valtieri, M, Calin, GA, Liu, CG, Sorrentino, A, Croce, CM, Peschle, C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102: pp. 18081-18086 CrossRef
    51. Yamaguchi, J, Kusano, KF, Masuo, O, Kawamoto, A, Silver, M, Murasawa, S, Bosch-Marce, M, Masuda, H, Losordo, DW, Isner, JM, Asahara, T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: pp. 1322-1328 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Endothelial progenitor cells (EPCs) play a fundamental role in not only blood vessel development but also post-natal vascular repair. Currently EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Both EPC types assist angiogenesis and have been linked to ischemia-related disorders, including coronary artery disease (CAD). Results We found late EPCs are more mobile than early EPCs and matured endothelial cells (ECs). To pinpoint the mechanism, microRNA profiles of early EPCs late EPCs, and ECs were deciphered by small RNA sequencing. Obtained signatures made up of both novel and known microRNAs, in which anti-angiogenic microRNAs such as miR-221 and miR-222 are more abundant in matured ECs than in late EPCs. Overexpression of miR-221 and miR-222 resulted in the reduction of genes involved in hypoxia response, metabolism, TGF-beta signalling, and cell motion. Not only hamper late EPC activities in vitro, both microRNAs (especially miR-222) also hindered in vivo vasculogenesis in a zebrafish model. Reporter assays showed that miR-222, but not miR-221, targets the angiogenic factor ETS1. In contrast, PIK3R1 is the target of miR-221, but not miR-222 in late EPCs. Clinically, both miR-221-PIK3R1 and miR-222-ETS1 pairs are deregulated in late EPCs of CAD patients. Conclusions Our results illustrate EPCs and ECs exploit unique miRNA modalities to regulate angiogenic features, and explain why late EPC levels and activities are reduced in CAD patients. These data will further help to develop new plasma biomarkers and therapeutic approaches for ischemia-related diseases or tumor angiogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700