Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method
详细信息    查看全文
  • 作者:JianGuo Zhu (1)
    Wei Chen (2)
    HuiMin Xie (3)

    1. Faculty of Civil Engineering and Mechanics
    ; Jiangsu University ; Zhenjiang ; 212013 ; China
    2. School of Naval Architecture and Ocean Engineering
    ; Jiangsu University of Science and Technology ; Zhenjiang ; 212003 ; China
    3. Key Laboratory of Applied Mechanics (AML)
    ; Department of Engineering Mechanics ; Tsinghua University ; Beijing ; 100084 ; China
  • 关键词:residual stress ; failure mechanism ; finite element method ; thermal barrier coating ; 娈嬩綑搴斿姏 ; 澶辨晥鍒嗘瀽 ; 鏈夐檺鍏冩ā鎷?/li> 鐑殰娑傚眰 ; 034602
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:1-10
  • 全文大小:2,733 KB
  • 参考文献:1. Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296: 280鈥?84 CrossRef
    2. Mao W G, Dai C, Yang L, et al. Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures. Int J Fracture, 2008, 151: 107鈥?20 CrossRef
    3. Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci, 2001, 46: 505鈥?53 CrossRef
    4. Kamara A M, Davey K. A numerical and experimental investigation into residual stress in thermally sprayed coatings. Int J Solids Struct, 2007, 44: 8532鈥?555 CrossRef
    5. Zhou Y C, Mao W G, Yang L, et al. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mech Mater, 2006, 38: 1118鈥?127 CrossRef
    6. Bednarz P. Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems. Dissertation for the Doctoral Degree. J眉lich: Forschungszentrum J猫ulich, 2007. 1鈥?21
    7. Bialas M. Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat Tech, 2008, 202: 6002鈥?010 CrossRef
    8. Busso E, Lin J, Sakurai S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model. Acta Mater, 2001, 49: 1529鈥?536 CrossRef
    9. He M Y, Hutchinson J W, Evans A G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2003, 345: 172鈥?78 CrossRef
    10. Sun Y L, Li J G, Zhang W X, et al. Local stress evolution in thermal barrier coating system during isothermal growth of irregular oxide layer. Surf Coat Technol, 2013, 216: 237鈥?50 CrossRef
    11. Aktaa J, Sfar K, Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Mater, 2005, 53: 4399鈥?413 CrossRef
    12. Ranjbar-Far M, Absi J, Mariaux G, et al. Effect of residual stresses and prediction of possible failure mechanisms on thermal barrier coating system by finite element method. J Therm Spray Technol, 2010, 19: 1054鈥?061 CrossRef
    13. Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48: 3963鈥?976 CrossRef
    14. Freborg A M, Ferguson B L, Brindley W J, et al. Modeling oxidation induced stresses in thermal barrier coatings. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 1998, 245: 182鈥?90 CrossRef
    15. R枚sler J, B盲ker M, Aufzug K. A parametric study of the stress state of thermal barrier coatings. Part I: Creep relaxation. Acta Mater, 2004, 52: 4809鈥?817
    16. Qi H Y, Yang X G. Computational analysis for understanding the failure mechanism of APS-TBC. Comp Mater Sci, 2012, 57: 38鈥?2 CrossRef
    17. Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater Design, 2010, 31: 772鈥?81 CrossRef
    18. Cipitria A, Golosnoy I O, Clyne T W. A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Mater, 2009, 57: 980鈥?92 CrossRef
    19. Asghari S, Salimi M, Salehi M. Modeling nonlinear elastic behavior of plasma sprayed ceramics and its evolution with sintering. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2010, 527: 4241鈥?249 CrossRef
    20. Asghari S, Salimi M. Finite element simulation of thermal barrier coating performance under thermal cycling. Surf Coat Technol, 2010, 205: 2042鈥?050 CrossRef
    21. Ma K, Zhu J G, Xie H M, et al. Effect of porous microstructure on the elastic modulus of plasma-sprayed thermal barrier coatings: Experiment and numerical analysis. Surf Coat Technol, 2013, 235: 589鈥?95 CrossRef
    22. Choi S R, Zhu D M, Miller R A. Mechanical properties/database of plasma-sprayed ZrO2-8wt% Y2O3 thermal barrier coatings. Int J Appl Ceram Technol, 2004, 1: 330鈥?42 CrossRef
    23. Zotov N, Bartsch M, Eggeler G. Thermal barrier coating systems-analysis of nanoindentation curves. Surf Coat Technol, 2009, 203: 2064鈥?072 CrossRef
    24. Qiao J H, Bolot R, Liao H L. Finite element modeling of the elastic modulus of thermal barrier coatings. Surf Coat Technol, 2012, 220: 170鈥?73 CrossRef
    25. Ranjbar-Far M, Absi J, Mariaux G. Finite element modeling of the different failure mechanisms of a plasma sprayed thermal barrier coatings system. J Therm Spray Technol, 2012, 21: 1234鈥?244 CrossRef
    26. Oliver W C, Pharr G M. An Improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7: 1564鈥?583 CrossRef
    27. Zhu J G, Xie H M, Hu Z X, et al. Cross-sectional residual stresses in thermal spray coatings measured by Moir茅 interferometry and nanoindentation technique. J Therm Spray Technol, 2012, 21: 810鈥?17 CrossRef
    28. Jang B K, Matsubara H. Influence of porosity on hardness and Young鈥檚 modulus of nanoporous EB-PVD TBCs by nanoindentation. Mater Lett, 2005, 59: 3462鈥?466 CrossRef
    29. Wang J C. Young鈥檚 modulus of porous materials. J Mater Sci, 1984, 19: 801鈥?08 CrossRef
    30. Editorial Board of Chinese Aeronautical Materials. Handbook of Chinese Aeronautical Materials. Beijing: China Standard Press, 2002. 260鈥?78
    31. Huntz A, Amiri G C, Evans H, et al. Comparison of oxidation-growth stresses in NiO film measured by deflection and calculated using creep analysis or finite-element modeling. Oxid Met, 2002, 57: 499鈥?21 CrossRef
    32. Busso E P, Qian Z Q. A mechanistic study of microcracking in transversely isotropic ceramic-metal systems. Acta Mater, 2006, 54: 325鈥?38 CrossRef
    33. R枚sler J, B盲ker M, Volgmann M. Stress state and failure mechanisms of thermal barrier coatings: Role of creep in thermally grown oxide. Acta Mater, 2001, 49: 3659鈥?670 CrossRef
    34. Nakamura T, Qian G, Berndt C C. Effects of pores on mechanical properties of plasma-sprayed ceramic coatings. J Am Ceram Soc, 2000, 83: 578鈥?84 CrossRef
    35. Lughi V, Tolpygo V K, Clarke D R. Microstructural aspects of the sintering of thermal barrier coatings. Mat Sci Eng A-Struct Mater Prop Microstruct Process, 2004, 368: 212鈥?21 CrossRef
    36. Chen W R, Wu X, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf Coat Technol, 2008, 202: 2677鈥?683 CrossRef
    37. Va脽en R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol, 2010, 205: 938鈥?42 CrossRef
    38. Naumenko D, Shemet V, Singheiser L, et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide. J Mater Sci, 2009, 44: 1687鈥?703 CrossRef
    39. Spitsberg I, Mumm D, Evans A. On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings. Mat Sci Eng A-Struct Mater Prop Microstruct Process, 2005, 394: 176鈥?91 CrossRef
    40. Chang G, Phucharoen W, Miller R. Finite element thermal stress solutions for thermal barrier coatings. Surf Coat Technol, 1987, 32: 307鈥?25 CrossRef
    41. Wu L F, Zhu J G, Xie H M. Numerical and experimental investigation of residual stress in thermal barrier coatings during APS process. J Therm Spray Technol, 2014, 23: 653鈥?65 CrossRef
    42. Baig M, Khalid F, Khan F, et al. Properties and residual stress distribution of plasma sprayed magnesia stabilized zirconia thermal barrier coatings. Ceram Int, 2014, 40: 4853鈥?868 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
    Mechanics, Fluids and Thermodynamics
    Physics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1927
文摘
Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700