Theoretical and experimental study on remote dynamic balance control for a suspended wheeled mobile manipulator
详细信息    查看全文
  • 作者:Guoliang Zhong (1) (2)
    Hua Deng (1) (2)
    Yukinori Kobayashi (3)
    Hengsheng Wang (1) (2)

    1. School of Mechanical and Electrical Engineering
    ; Central South University ; Changsha ; 410083 ; China
    2. State Key Laboratory of High-Performance Complex Manufacturing
    ; Central South University ; Changsha ; 410083 ; China
    3. Faculty of Engineering
    ; Hokkaido University ; Sapporo ; Hokkaido ; 0608628 ; Japan
  • 关键词:Suspended wheeled mobile manipulator (SWMM) ; Mechanical model ; Dynamic balance control ; Remote control ; Virtual reality
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:79
  • 期:2
  • 页码:851-864
  • 全文大小:2,254 KB
  • 参考文献:1. Korayem, M.H., Zehfroosh, A., Tourajizadeh, H., Manteghi, S.: Optimal motion planning of non-linear dynamic systems in the presence of obstacles and moving boundaries using SDRE: application on cable-suspended robot. Nonlinear Dyn. 76, 1423鈥?441 (2014) CrossRef
    2. Alipour, K., Moosavian, S.A.A.: Effect of terrain traction, suspension stiffness and grasp posture on the tip-over stability of wheeled robots with multiple arms. Adv. Robot. 26, 817鈥?42 (2012)
    3. Zhong, G., Kobayashi, Y., Emaru, T., Hoshino, Y.: Optimal control of the dynamic stability for robotic vehicles in rough terrain. Nonlinear Dyn. 73, 981鈥?92 (2013) CrossRef
    4. Murphy, L., Newman, P.: Risky planning on probabilistic costmaps for path planning in outdoor environments. IEEE Trans. Robot. 29, 445鈥?57 (2013) CrossRef
    5. Zhong, G., Kobayashi, Y., Emaru, T., Hoshino, Y.: Approaches based on particle swarm optimization for problems of vibration reduction of suspended mobile robot with a manipulator. J. Vib. Control 20, 3鈥?3 (2014) CrossRef
    6. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36, 1208鈥?213 (1991) CrossRef
    7. Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. Autom. 24, 416鈥?29 (2008) CrossRef
    8. Yagiz, N., Hacioglu, Y.: Fuzzy sliding modes with moving surface for the robust control of a planar robot. J. Vib. Control 11, 903鈥?22 (2005) CrossRef
    9. Nieto, A.J., Morales, A.L., Trapero, J.R., Chicharro, J.M., Pintado, P.: An adaptive pneumatic suspension based on the estimation of the excitation frequency. J. Sound Vib. 330, 1891鈥?903 (2011) CrossRef
    10. Zeman, V., Patel, R.V., Khorasani, K.: Control of a flexible joint robot using neural networks. IEEE Trans. Control Syst. Technol. 5, 453鈥?62 (1997) CrossRef
    11. Kumar, R.: Effective active vibration control of single link flexible manipulator with modified positive position feedback control in the presence of instrumentation phase lead/lag. J. Vib. Control 19, 1538鈥?560 (2013) CrossRef
    12. Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73, 167鈥?82 (2013) CrossRef
    13. Messuri, D.A., Klein, C.A.: Automatic body regulation for maintaining stability of legged vehicles during rough-terrain locomotion. IEEE J. Robot. Autom. 1, 132鈥?41 (1985) CrossRef
    14. Ghasempoor, A., Sepehri, N.: A measure of machine stability for moving base manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICCA 1995), pp. 2249鈥?254 (1995)
    15. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: generalized stability criterion for walking vehicles. In: Proceedings of International Conference on Climbing and Walking Robots (ICCWR 1998), pp. 71鈥?6 (1998)
    16. Garcia, E., Santos, P.A.G.: A new dynamic energy stability margin for walking machines. In: Proceedings of International Conference on Advanced Robotics (ICAR 2003), pp. 1014鈥?019 (2003)
    17. Lin, B.S., Song, S.M.: Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 1993), pp. 367鈥?73 (1993)
    18. Kim, D.W., Kim, N.H., Park, G.T.: ZMP based neural network inspired humanoid robot control. Nonlinear Dyn. 67, 793鈥?06 (2012) CrossRef
    19. Chen, C.Y., Shih, B.Y., Shih, C.H., Wang, L.H.: Design, modeling and stability control for an actuated dynamic walking planar bipedal robot. J. Vib. Control 19, 376鈥?84 (2013) CrossRef
    20. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Kawatsuma, S.: Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J. Field Robot. 30, 44鈥?3 (2013) CrossRef
    21. Forouzantabar, A., Talebi, H.A., Sedigh, A.K.: Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67, 1123鈥?134 (2012) CrossRef
    22. Hainsworth, D.W.: Teleoperation user interfaces for mining robotics. Auton. Robot. 11, 19鈥?8 (2001) CrossRef
    23. Cui, F., Zhang, M., Cui, G., Wu. X.: A robot teleoperation system based on virtual reality and WLAN. In: Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA 2006), pp. 9193鈥?197 (2006)
    24. Livatino, S., Muscato, G., Privitera, F.: Stereo viewing and virtual reality technologies in mobile robot teleguide. IEEE Trans. Robot. 25, 1343鈥?355 (2009) CrossRef
    25. Chen, C.Y., Huang, P.H.: Review of an autonomous humanoid robot and its mechanical control. J. Vib. Control 18, 973鈥?82 (2012) CrossRef
    26. Sarkar, N., Yun, X., Kumar, V.: Control of mechanical systems with rolling constraints application to dynamic control of mobile robots. Int. J. Robot. Res. 13, 55鈥?9 (1994) CrossRef
    27. Zhong, G., Kobayashi, Y., Emaru, T., Hoshino, Y.: Trajectory tracking of wheeled mobile robot with a manipulator considering dynamic interaction and modeling uncertainty. In: Intelligent Robotics and Applications, pp. 366鈥?75. Springer, Berlin (2012)
    28. Tayebi, A., Tadjine, M., Rachid, A.: Invariant manifold approach for the stabilization of nonholonomic chained systems: application to a mobile robot. Nonlinear Dyn. 24, 167鈥?81 (2001)
    29. Fateh, M.M., Babaghasabha, R.: Impedance control of robots using voltage control strategy. Nonlinear Dyn. 74, 277鈥?86 (2013) CrossRef
    30. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGBD mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31, 647鈥?63 (2012) CrossRef
    31. Yoshida, T., Nagatani, K., Tadokoro, S., Nishimura, T., Koyanagi, E.: Improvements to the rescue robot quince toward future indoor surveillance missions in the Fukushima Daiichi nuclear power plant. In: Field and Service Robotics. Springer, Berlin (2014)
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Dynamic balance of mobile robots is a challenging research because of its complex nonlinearity and dynamics. This study proposes a dynamic balance control (DBC) method to enhance the stability and presents a virtual control strategy that could help the operators manipulate the robot remotely. Considering vibration absorption, the robot employs semi-active suspension systems that are capable of reducing the vibration induced by rough terrain. But the systems aggravate unbalance when the robot starts/stops rapidly and the manipulator performs tasks after the robot locked onto a target. Aiming to minimize the unbalance, the DBC method is presented by combining the off-line input voltage shaping and real-time stability compensation. On the basis of it, through building the dynamic model of the robot, the unbalance can be eliminated by regulating the input voltage of motors installed in driving wheels and actuated joints. Further, for reducing the unbalance caused by external shock from the unevenness of pavement surface, the study seeks to apply the force-angle stability margin to measure the stability. For experimental study, the virtual reality technology is used to develop a visualized remote control system, which is realized by using WiMax to transmit the commands and remote desktop from the lower computer to upper computer. Finally, the proposed method is demonstrated on a suspended wheeled mobile manipulator by simulations and experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700