MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome
详细信息    查看全文
  • 作者:Ohad Manor (1)
    Elhanan Borenstein (1) (2) (3)

    1. Department of Genome Sciences
    ; University of Washington ; Seattle ; WA ; 98195 ; USA
    2. Department of Computer Science and Engineering
    ; University of Washington ; Seattle ; WA ; 98195 ; USA
    3. Santa Fe Institute
    ; Santa Fe ; NM ; 87501 ; USA
  • 刊名:Genome Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:6,764 KB
  • 参考文献:1. Kanehisa, M, Goto, S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: pp. 27-30 CrossRef
    2. Consortium, THMP (2013) Structure, function and diversity of the healthy human microbiome. Nature. 486: pp. 207-214
    3. Kanehisa, M, Goto, S, Sato, Y, Furumichi, M, Tanabe, M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40: pp. D109-D114 CrossRef
    4. Qin, J, Li, R, Jeroen, R, Arumugam, M, Burgdorf, KS, Manichanh, C (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464: pp. 59-65 CrossRef
    5. Yatsunenko, T, Rey, FE, Manary, MJ, Trehan, I, Dominguez-Bello, MG, Contreras, M (2012) Human gut microbiome viewed across age and geography. Nature. 486: pp. 222-227
    6. David, LA, Maurice, CF, Carmody, RN, Gootenberg, DB, Button, JE, Wolfe, BE (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505: pp. 559-563 CrossRef
    7. Abubucker, S, Segata, N, Goll, J, Schubert, AM, Izard, J, Cantarel, BL (2012) Metabolic reconstruction for metagenomic data and its application to the human Microbiome. PLoS Comput Biol. 8: pp. e1002358 CrossRef
    8. Shafquat, A, Joice, R, Simmons, SL, Huttenhower, C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 22: pp. 261-266 CrossRef
    9. Cani, PD, Amar, J, Iglesias, MA, Poggi, M, Knauf, C, Bastelica, D (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56: pp. 1761-1772 CrossRef
    10. McHardy, IH, Goudarzi, M, Tong, M, Ruegger, PM, Schwager, E, Weger, JR (2013) Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 1: pp. 17 CrossRef
    11. Qin, J, Li, Y, Cai, Z, Li, S, Zhu, J, Zhang, F (2013) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 490: pp. 55-60 CrossRef
    12. Aitchison, J (1986) The statistical analysis of compositional data. Chapman & Hall Ltd., London CrossRef
    13. Hattersley, AT, Turner, RC, Patel, P, O鈥橰ahilly, S (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet. 339: pp. 1307-1310 CrossRef
    14. Friedman, J, Alm, EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol. 8: pp. e1002687 CrossRef
    15. Bouch茅, C, Serdy, S, Kahn, CR, Goldfine, AB (2004) The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 25: pp. 807-830 CrossRef
    16. Paulson, JN, Stine, OC, Bravo, HC, Pop, M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Meth. 10: pp. 1200-1202 CrossRef
    17. Morgan, XC, Tickle, TL, Sokol, H, Gevers, D, Devaney, KL, Ward, DV (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13: pp. R79 CrossRef
    18. Beszteri, B, Temperton, B, Frickenhaus, S, Giovannoni, SJ (2010) Average genome size: a potential source of bias in comparative metagenomics. ISME J. 4: pp. 1075-1077 CrossRef
    19. Frank, JA, S酶rensen, SJ (2011) Quantitative metagenomic analyses based on average genome size normalization. Appl Environ Microbiol. 77: pp. 2513-2521 CrossRef
    20. Chatelier, E, Nielsen, T, Qin, J, Prifti, E, Hildebrand, F, Falony, G (2013) Richness of human gut microbiome correlates with metabolic markers. Nature. 500: pp. 541-546 CrossRef
    21. Mathur, R, Goyal, D, Kim, G, Barlow, GM, Chua, KS, Pimentel, M (2014) Methane-producing human subjects have higher serum glucose levels during oral glucose challenge than non-methane producers: a pilot study of the effects of enteric methanogens on glycemic regulation. Res J Endocrinol Metab. 2: pp. 2 CrossRef
    22. Angly, FE, Willner, D, Prieto-Dav贸, A, Edwards, RA, Schmieder, R, Vega-Thurber, R (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol. 5: pp. e1000593 CrossRef
    23. Raes, J, Korbel, JO, Lercher, MJ, Mering, C, Bork, P (2007) Prediction of effective genome size in metagenomic samples. Genome Biol. 8: pp. R10 CrossRef
    24. Langille, MGI, Zaneveld, J, Caporaso, JG, McDonald, D, Knights, D, Reyes, JA (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 31: pp. 814-821 CrossRef
    25. Benjamini, Y, Speed, TP (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40: pp. e72 CrossRef
    26. Oh, J, Byrd, AL, Deming, C, Conlan, S, Program, NCS, Kong, HH (2014) Biogeography and individuality shape function in the human skin metagenome. Nature. 514: pp. 59-64 CrossRef
    27. Wylie, KM, Mihindukulasuriya, KA, Zhou, Y, Sodergren, E, Storch, GA, Weinstock, GM (2014) Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 12: pp. 71 CrossRef
    28. Minot, S, Bryson, A, Chehoud, C, Wu, GD, Lewis, JD, Bushman, FD (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A. 110: pp. 12450-12455 CrossRef
    29. Greenblum, S, Turnbaugh, PJ, Borenstein, E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 109: pp. 594-599 CrossRef
    30. Darling, AE, Jospin, G, Lowe, E, Matsen, FA, Bik, HM, Eisen, JA (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. Peerl. 2: pp. e243 CrossRef
    31. Katoh, K, Misawa, K, Kuma, K-I, Miyata, T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: pp. 3059-3066 CrossRef
    32. Carr, R, Borenstein, E (2014) Comparative analysis of functional metagenomic annotation and the mappability of short reads. PLoS One. 9: pp. e105776 CrossRef
    33. Friedman, J, Hastie, T, Tibshirani, R (2010) glmnet: lasso and elastic-net regularized generalized linear models. J Stat Softw 33: pp. 1-22
    34. Tibshirani, R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 58: pp. 267-288
    35. Zou, H, Hastie, T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B Stat Meth. 67: pp. 301-320 CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Functional metagenomic analyses commonly involve a normalization step, where measured levels of genes or pathways are converted into relative abundances. Here, we demonstrate that this normalization scheme introduces marked biases both across and within human microbiome samples, and identify sample- and gene-specific properties that contribute to these biases. We introduce an alternative normalization paradigm, MUSiCC, which combines universal single-copy genes with machine learning methods to correct these biases and to obtain an accurate and biologically meaningful measure of gene abundances. Finally, we demonstrate that MUSiCC significantly improves downstream discovery of functional shifts in the microbiome. MUSiCC is available at http://elbo.gs.washington.edu/software.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700