Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation
详细信息    查看全文
  • 作者:Bo Xu (1) (2) (3) (4)
    Weijiang Xu (1) (2) (3) (4)
    Junjun Li (1) (2) (3) (4)
    Liming Dai (1)
    Caiyun Xiong (1)
    Xianghua Tang (1) (2) (3) (4)
    Yunjuan Yang (1) (2) (3) (4)
    Yuelin Mu (1) (2) (3) (4)
    Junpei Zhou (1) (2) (3) (4)
    Junmei Ding (1) (2) (3) (4)
    Qian Wu (1) (2) (3) (4)
    Zunxi Huang (1) (2) (3) (4)

    1. School of Life Science
    ; Yunnan Normal University ; Kunming ; 650500 ; China
    2. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy
    ; Ministry of Education ; Kunming ; 650500 ; China
    3. Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment
    ; Kunming ; 650500 ; China
    4. Key Laboratory of Enzyme Engineering
    ; Yunnan Normal University ; Kunming ; 650500 ; China
  • 关键词:Gastrointestinal microbiota ; Rhinopithecus bieti ; Metagenomics ; Lignocellulose degradation ; Pyrosequencing
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,820 KB
  • 参考文献:1. Long, YC, Kirkpatrick, CR, Zhong, T, Xiao, L (1994) Report on distribution, population and ecology of the Yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 35: pp. 241-250 CrossRef
    2. Bennett, EL, Davies, AG The ecology of Asian colobines. In: Davies, AG, Oates, JF eds. (1994) Colobine monkeys: Their ecology, behaviour and evolution. Cambridge University Press, Cambridge, UK, pp. 129-171
    3. Peng, YZ, Zhang, YP, Ye, ZZ, Liu, RL (1983) Study on the stomachs in three species of snub-nosed monkeys. Zoonoses Res 4: pp. 167-175
    4. Chen, JJ, Lu, T, Liu, JS, Huang, ZR (1995) Observations on the stomach of Rhinopithecus Roxellanae. Acta Theriologica Sinica 15: pp. 176-180
    5. Ley, RE, Hamady, M, Lozupone, C, Turnbaugh, PJ, Ramey, RR, Bircher, JS (2008) Evolution of mammals and their gut microbes. Science 320: pp. 1647-1651 CrossRef
    6. Wu, C, Yang, F, Gao, R, Huang, Z, Xu, B, Dong, Y (2010) Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences. Afr J Biotechnol 9: pp. 6278-6289
    7. Eckburg, PB, Bik, EM, Bernstein, CN, Purdom, E, Dethlefsen, L, Sargent, M (2005) Diversity of the human intestinal flora. Science 308: pp. 1635-1638 CrossRef
    8. Gill, SR, Pop, M, Deboy, RT, Eckburg, PB, Turnbaugh, PJ, Samuel, BS (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: pp. 1355-1359 CrossRef
    9. Turnbaugh, PJ, Hamady, M, Yatsunenko, T, Cantarel, BL, Duncan, A, Ley, RE (2009) A core gut microbiome in obese and lean twins. Nature 457: pp. 480-484 CrossRef
    10. Qin, J, Li, R, Raes, J, Arumugam, M, Burgdorf, KS, Manichanh, C (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: pp. 59-65 CrossRef
    11. Warnecke, F, Luginb眉hl, P, Ivanova, N, Ghassemian, M, Richardson, TH, Stege, JT (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: pp. 560-565 CrossRef
    12. Qu, A, Brulc, JM, Wilson, MK, Law, BF, Theoret, JR, Joens, LA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: pp. e2945 CrossRef
    13. Brulc, JM, Antonopoulos, DA, Miller, ME, Wilson, MK, Yannarell, AC, Dinsdale, EA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106: pp. 1948-1953 CrossRef
    14. Pope, PB, Denman, SE, Jones, M, Tringe, SG, Barry, K, Malfatti, SA (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 107: pp. 14793-14798 CrossRef
    15. Hess, M, Sczyrba, A, Egan, R, Kim, TW, Chokhawala, H, Schroth, G (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: pp. 463-467 CrossRef
    16. Swanson, KS, Dowd, SE, Suchodolski, JS, Middelbos, IS, Vester, BM, Barry, KA (2011) Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5: pp. 639-649 CrossRef
    17. Lamendella, R, Domingo, JW, Ghosh, S, Martinson, J, Oerther, DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11: pp. 103 CrossRef
    18. Dai, X, Zhu, Y, Luo, Y, Song, L, Liu, D, Liu, L (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7: pp. e40430 CrossRef
    19. Tun, HM, Brar, MS, Khin, N, Jun, L, Hui, RK, Dowd, SE (2012) Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 88: pp. 369-376 CrossRef
    20. Singh, KM, Ahir, VB, Tripathi, AK, Ramani, UV, Sajnani, M, Koringa, PG (2012) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39: pp. 4841-4848 CrossRef
    21. Li, RW, Connor, EE, Li, C, Baldwin Vi, RL, Sparks, ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14: pp. 129-139 CrossRef
    22. Pope, PB, Mackenzie, AK, Gregor, I, Smith, W, Sundset, MA, McHardy, AC (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: pp. e38571 CrossRef
    23. Lu, HP, Wang, YB, Huang, SW, Lin, CY, Wu, M, Hsieh, CH (2012) Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics 13: pp. 466 CrossRef
    24. Bhatt, VD, Dande, SS, Patil, NV, Joshi, CG (2013) Molecular analysis of the bacterial microbiome in the forestomach fluid from the dromedary camel (Camelus dromedarius). Mol Biol Rep 40: pp. 3363-3371 CrossRef
    25. Xu, B, Xu, W, Yang, F, Li, J, Yang, Y, Tang, X (2013) Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS One 8: pp. e56565 CrossRef
    26. Meyer, F, Paarmann, D, D鈥橲ouza, M, Olson, R, Glass, EM, Kubal, M (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9: pp. 386 CrossRef
    27. Chandler, DP, Fredrickson, JK, Brockman, FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6: pp. 475-482 CrossRef
    28. Lynd, LR, Weimer, PJ, Zyl, WH, Pretorius, IS (2002) Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol Mol Biol Rev 66: pp. 506-577 CrossRef
    29. Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: pp. D233-D238 CrossRef
    30. Jindou, S, Borovok, I, Rincon, MT, Flint, HJ, Antonopoulos, DA, Berg, ME (2006) Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol 188: pp. 7971-7976 CrossRef
    31. Bayer, EA, Belaich, JP, Shoham, Y, Lamed, R (2004) The Cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58: pp. 521-554 CrossRef
    32. Demain, AL, Newcomb, M, Wu, JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69: pp. 124-154 CrossRef
    33. Mazmanian, SK, Liu, CH, Tzianabos, AO, Kasper, DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: pp. 107-118 CrossRef
    34. Mazmanian, SK, Round, JL, Kasper, DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453: pp. 620-625 CrossRef
    35. Round, JL, Mazmanian, SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107: pp. 12204-12209 CrossRef
    36. Tap, J, Mondot, S, Levenez, F, Pelletier, E, Caron, C, Furet, JP (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11: pp. 2574-2584 CrossRef
    37. Xu, J, Mahowald, MA, Ley, RE, Lozupone, CA, Hamady, M, Martens, EC (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5: pp. e156 CrossRef
    38. Stanier, RY (1947) Studies on non-fruiting myxobacteria. I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J Bacteriol 53: pp. 297-315
    39. Kirchman, DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39: pp. 91-100
    40. Wei, B, Huang, T, Dalwadi, H, Sutton, CL, Bruckner, D, Braun, J (2002) Pseudomonas fluorescens encodes the Crohn鈥檚 disease-associated I2 sequence and T-cell superantigen. Infect Immun 70: pp. 6567-6575 CrossRef
    41. Montgomery, L, Flesher, B, Stahl, D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen-nov as Fibrobacter succinogenes comb nov and description of Fibrobacter intestinalis sp-nov. Int J Syst Bacteriol 38: pp. 430-435 CrossRef
    42. Hongoh, Y, Deevong, P, Hattori, S, Inoue, T, Noda, S, Noparatnaraporn, N (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72: pp. 6780-6788 CrossRef
    43. Breznak, JA, Brune, A (1994) Role of microrganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39: pp. 453-487 CrossRef
    44. Wenzel, M, Radek, R, Brugerolle, G, Konig, H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39: pp. 11-23 CrossRef
    45. Scanlan, PD, Marchesi, JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and 鈥搃ndependent analysis of faeces. ISME J 2: pp. 1183-1193 CrossRef
    46. Pandey, PK, Siddharth, J, Verma, P, Bavdekar, A, Patole, MS, Shouche, YS (2012) Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. J Biosci 37: pp. 221-226 CrossRef
    47. Hobson, PN, Wallace, RJ (1982) Microbial ecology and active ties in the rumen. Crit Rev Microbiol 9: pp. 165-225 CrossRef
    48. Nierman, WC, Pain, A, Anderson, MJ, Wortman, JR, Kim, HS, Arroyo, J (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: pp. 1151-1156 CrossRef
    49. Turnbaugh, PJ, Ley, RE, Mahowald, MA, Magrini, V, Mardis, ER, Gordon, JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: pp. 1027-1031 CrossRef
    50. Skillman, LC, Evans, PN, Strompl, C, Joblin, KN (2006) 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 42: pp. 222-228 CrossRef
    51. Kurokawa, K, Itoh, T, Kuwahara, T, Oshima, K, Toh, H, Toyoda, A (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14: pp. 169-181 CrossRef
    52. Hook, SE, Wright, AD, McBride, BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 30: pp. 945785
    53. Conway de Macario, E, Macario, AJ (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int J Med Microbiol 299: pp. 99-108 CrossRef
    54. Zhang, H, DiBaise, JK, Zuccolo, A, Kudrna, D, Braidotti, M, Yu, Y (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106: pp. 2365-2370 CrossRef
    55. Weinbauer, MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28: pp. 127-181 CrossRef
    56. Gorski, A, Weber-Dabrowska, B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62: pp. 511-519 CrossRef
    57. Breitbart, M, Hewson, I, Felts, B, Mahaffy, JM, Nulton, J, Salamon, P (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185: pp. 6220-6223 CrossRef
    58. Davies, TJ, Pedersen, AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc Biol Sci 275: pp. 1695-1701 CrossRef
    59. Tajima, K, Aminov, RI, Nagamine, T, Matsui, H, Nakamura, M, Benno, Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67: pp. 2766-2774 CrossRef
    60. Lubbs, DC, Vester, BM, Fastinger, ND, Swanson, KS (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr (Berl) 93: pp. 113-121 CrossRef
    61. Turnbaugh, PJ, Backhed, F, Fulton, L, Gordon, JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: pp. 213-223 CrossRef
    62. Abnous, K, Brooks, SP, Kwan, J, Matias, F, Green-Johnson, J, Selinger, LB (2009) Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. J Nutr 139: pp. 2024-2031 CrossRef
    63. Li, F, Hullar, MAJ, Schwarz, Y, Lampe, JW (2009) Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. J Nutr 139: pp. 1685-1691 CrossRef
    64. Kisidayov谩, S, V谩radyov谩, Z, Pristas, P, Piknov谩, M, Nigutov谩, K, Petrzelkov谩, KJ (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71: pp. 548-557 CrossRef
    65. Machovic, M, Janecek, S (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63: pp. 2710-2724 CrossRef
    66. Harvey, AJ, Hrmova, M, Gori, R, Varghese, JN, Fincher, GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41: pp. 257-269 CrossRef
    67. Lairson, LL, Henrissat, B, Davies, GJ, Withers, SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77: pp. 521-555 CrossRef
    68. Ley, RE, Peterson, DA, Gordon, JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: pp. 837-848 CrossRef
    69. Overbeek, R, Begley, T, Butler, RM, Choudhuri, JV, Chuang, HY, Cohoon, M (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33: pp. 5691-5702 CrossRef
    70. Kaufman, L, Rousseeuw, PJ (1990) Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York
    71. Hammer, 脴, Harper, DAT, Ryan, PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: pp. 1-9
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs. Results In this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen. Conclusions Metagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700