Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools
详细信息    查看全文
  • 关键词:Active peptides ; Anaerobe ; Antibiotic ; Anticancer ; Bacteriocin ; Bacteriotherapy ; Microbiome
  • 刊名:Advances in Biochemical Engineering/Biotechnology
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:156
  • 期:1
  • 页码:433-464
  • 参考文献:1.Hill JO, Wyatt HR, Reed GW, Peters JC (2003) Obesity and the environment: where do we go from here? Science 299:853–855CrossRef
    2.Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE (2010) Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc 85:1138–1141CrossRef
    3.Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298CrossRef
    4.Laxminarayan R, Malani A (2007) Extending the cure: policy responses to the growing threat of antibiotic resistance. Earthscan
    5.WHO (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response
    6.WHO (2011) Antimicrobial resistance. http://​www.​who.​int/​mediacentre/​factsheets/​fs194/​en/​
    7.Gerberding J (2003) The resistance phenomenon in microbes and infectious disease vectors: implications for human health and strategies for containment. National Academic Press, Washington, pp 210–215
    8.Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17:287–290
    9.Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200CrossRef
    10.Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164CrossRef
    11.WHO (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva
    12.Payne DJ, Gwynn MN, Holmes DJ, Pompliano D (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40CrossRef
    13.So AD, Gupta N, Brahmachari SK, Chopra I, Munos B, Nathan C, Outterson K, Paccaud JP, Payne DJ, Peeling RW, Spigelman M, Weigelt J (2011) Towards new business models for R&D for novel antibiotics. Drug Resist Updat 14:88–94CrossRef
    14.Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol 304:14–22CrossRef
    15.Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRef
    16.Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695CrossRef
    17.Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRef
    18.Morris JG (1994) Obligately anaerobic bacteria in biotechnology. Appl Biochem Biotechnol 48:75–106CrossRef
    19.Weusthuis RA, Lamot I, van der Oost J, Sanders JPM (2011) Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol 29:153–158CrossRef
    20.Bernstein AS, Ludwig DS (2008) The importance of biodiversity to medicine. JAMA 300:2297–2299CrossRef
    21.Brown DG, Lister T, May-Dracka TL (2014) New natural products as new leads for antibacterial drug discovery. Bioorg Med Chem Lett 24:413–418CrossRef
    22.Hussain S, Fareed S, Ansari S, Khan S (2012) Marine natural products: a lead for anti cancer. Indian J Geo Mar Sci 41:27–39
    23.Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137CrossRef
    24.Cascales L, Craik DJ (2010) Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org Biomol Chem 8:5035–5047CrossRef
    25.Walton JD, Hallen-Adams HE, Luo H (2010) Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers 94:659–664CrossRef
    26.Arihara K, Cassens RG, Luchansky JB (1993) Characterisation of bacteriocins from Enterococcus faecium with activity against Listeria monocytogenes. Int J Food Microbiol 19:123–134CrossRef
    27.Balciunas EM, Al Arni S, Converti A, Leblanc JG, Oliveira RPDS (2015) Production of bacteriocin‐like inhibitory substances (BLIS) by Bifidobacterium lactis using whey as a substrate. Int J Dairy Technol 68:1–6CrossRef
    28.Barefoot SF, Nettles CG (1993) Antibiosis revisited: bacteriocins produced by dairy starter cultures. J Dairy Sci 76:2366–2379CrossRef
    29.Chakchouk-Mtibaa A, Elleuch L, Smaoui S, Najah S, Sellem I, Abdelkafi S, Mellouli L (2014) An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe 27:1–6CrossRef
    30.Cole ST, Garnier T (1993) Molecular genetic studies of UV-inducible bacteriocin production in Clostridium perfringens. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, New York, pp 248–254CrossRef
    31.Iverson WG, Mills NF (1976) Bacteriocins of Streptococcus bovis. Can J Microbiol 22:1040–1047CrossRef
    32.Lauková A, Mareková M, Javorsky P (1993) Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett Appl Microbiol 16:257–260CrossRef
    33.Maqueda M, Galvez A, Bueno M, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E (2004) Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Protein Pept Sci 5:399–416CrossRef
    34.Meghrous J, Euloge P, Junelles AM, Ballongue J, Petitdemange H (1990) Screening of Bifidobacterium strains for bacteriocin production. Biotechnol Lett 12:575–580CrossRef
    35.Miranda CMS, Farias LM, Carvalho MAR, Damasceno CAV, Totola AH, Tavares CAP, Cisalpino EO, Vieira EC (1993) Purification and partial characterization of a bacteriocin isolated from Bacteroides ovatus H47. Can J Microbiol 39:169–174CrossRef
    36.Southern JA, Katz W, Woods DR (1984) Purification and properties of a cell-bound bacteriocin from a Bacteroides fragilis strain. Antimicrob Agents Chemother 25:253–257CrossRef
    37.Toba T, Yoshioka E, Itoh T (1991) Potential of Lactobacillus gasseri isolated from infant faeces to produce bacteriocin. Lett Appl Microbiol 12:228–231CrossRef
    38.Wannun P, Piwat S, Teanpaisan R (2014) Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1. Anaerobe 27:17–21CrossRef
    39.Cotter PD, Ross RP, Hill C (2013) Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105CrossRef
    40.Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Procedia 2:50–56CrossRef
    41.Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 2006:4. doi:10.​1038/​nrmicro1273-c1
    42.Sanchez-Hidalgo M, Montalban-Lopez M, Cebrian R, Valdivia E, Martinez-Bueno M, Maqueda M (2011) AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 68:2845–2857CrossRef
    43.Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRef
    44.Blaser M (2011) Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476:393–394CrossRef
    45.Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat Rev Microbiol 9:233–243CrossRef
    46.Sobrino-Lopez A, Martin-Belloso O (2008) Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 18:329–343CrossRef
    47.Prudêncio CV, dos Santos MT, Vanetti MCD (2015) Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. J Food Sci Technol 52:5408–5417CrossRef
    48.Ghodhbane H, Elaidi S, Sabatier JM, Achour S, Benhmida J, Regaya I (2015) Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infect Disord Drug Targets 15:2–12CrossRef
    49.Piper C, Cotter PD, Ross RP, Hill C (2009) Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6:1–18CrossRef
    50.Arnusch CJ, Bonvin AM, Verel AM, Jansen WT, Liskamp RM, de Kruijff B, Pieters RJ, Breukink E (2008) The vancomycin-nisin(1–12) hybrid restores activity against vancomycin resistant enterococci. Biochemistry 47:12661–12663CrossRef
    51.Field D, Hill C, Cotter PD, Ross RP (2010) The dawning of a ‘Golden era’ in lantibiotic bioengineering. Mol Microbiol 78:1077–1087CrossRef
    52.Levengood MR, Knerr PJ, Oman TJ, van der Donk WA (2009) In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. J Am Chem Soc 131:12024–12025CrossRef
    53.Ross AC, McKinnie SM, Vederas JC (2012) The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S. J Am Chem Soc 134:2008–2011CrossRef
    54.Goldstein BP, Wei J, Greenberg K, Novick R (1998) Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother 42:277–278CrossRef
    55.van Staden AD, Brand AM, Dicks LM (2012) Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureus in vivo. J Appl Microbiol 112:831–840CrossRef
    56.Dziuba M, Darewicz M (2007) Food proteins as precursors of bioactive peptides – division into families. Food Sci Technol Int 13:393–404CrossRef
    57.Garcia AE, Camarero JA (2010) Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Curr Mol Pharmacol 3:153–163CrossRef
    58.Pelegrini PB, Franco OL (2005) Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37:2239–2253CrossRef
    59.Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894CrossRef
    60.Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588CrossRef
    61.Korhonen H, Pihlanto-Leppälä A (2001) Milk protein-derived bioactive peptides – novel opportunities for health promotion. IDF Bull 363:17–26
    62.Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M (2003) Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol 69:5297–5305CrossRef
    63.Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2006) Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72:2260–2264CrossRef
    64.Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2007) Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol J 2:426–434CrossRef
    65.Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323
    66.Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515CrossRef
    67.Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618CrossRef
    68.Mandal SM, Barbosa AEAD, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31:338–345CrossRef
    69.Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRef
    70.Schneider T, Müller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents – potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304:37–43CrossRef
    71.Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 13:152CrossRef
    72.Denger K, Warthmann R, Ludwig W, Schink B (2002) Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178CrossRef
    73.Hashizume H, Igarashi M, Hattori S, Hori M, Hamada M, Takeuchi T (2001) Tripropeptins, novel antimicrobial agents produced by Lysobacter sp. I. Taxonomy, isolation and biological activities. J Antibiot 54:1054–1059CrossRef
    74.Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72CrossRef
    75.Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287CrossRef
    76.Hashizume H, Hirosawa S, Sawa R, Muraoka Y, Ikeda D, Naganawa H, Igarashi M (2004) Tripropeptins novel antimicrobial agents produced by Lysobacter sp. II. Structure elucidation. J Antibiot 57:52–58CrossRef
    77.Kato A, Nakaya S, Kokubo N, Aiba Y, Ohashi Y, Hirata H, Fujii K, Harada K (1998) A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities. J Antibiot 51:929–935CrossRef
    78.Sammer UF, Volksch B, Mollmann U, Schmidtke M, Spiteller P, Spiteller M, Spiteller D (2009) 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Appl Environ Microbiol 75:7710–7717CrossRef
    79.Brady SF, Wright SA, Lee JC, Sutton AE, Zumoff CH, Wodzinsky RS, Beer SV, Clardy J (1999) Pantocin B, an antibiotic from Erwinia herbicola discovered by heterologous expression of cloned genes. J Am Chem Soc 121:11912–11913CrossRef
    80.Ishimaru CA, Klos EJ, Brubaker RR (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78:746–750CrossRef
    81.Jin M, Liu L, Wright SA, Beer SV, Clardy J (2003) Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew Chem Int Ed 42:2898–2901CrossRef
    82.Jin M, Wright SA, Beer SV, Clardy J (2003) The biosynthetic gene cluster of pantocin A provides insights into biosynthesis and a tool for screening. Angew Chem Int Ed 42:2902–2905CrossRef
    83.Fredenhagen A, Tamura SY, Kenny PTM, Komura H, Naya Y, Nakanishi K (1987) Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J Am Chem Soc 109:4409–4411CrossRef
    84.Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Habich D, Ziegelbauer K (2004) Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073CrossRef
    85.Needham J, Kelly MT, Ishige M, Andemen RJ (1994) Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: structure elucidation and biosynthesis. J Org Chem 59:2058–2063CrossRef
    86.Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136–141CrossRef
    87.Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230CrossRef
    88.Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077CrossRef
    89.McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991) Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795CrossRef
    90.Li J, Chen G, Webster JM (1997) Nematophin a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can J Microbiol 43:770–773CrossRef
    91.Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392CrossRef
    92.Kloss F, Lincke T, Hertweck C (2011) Highly efficient total synthesis of the Clostridium-derived anti-MRSA antibiotic closthioamide. Eur J Org Chem 2011:1429–1431CrossRef
    93.Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chem Int Ed 122:2055–2057CrossRef
    94.Ezaki M, Muramatsu H, Takase S, Hashimoto M, Nagai K (2008) Naphthalecin, a novel antibiotic produced by the anaerobic bacterium, Sporotalea colonica sp. nov. J Antibiot 61:207–212CrossRef
    95.Ganzle MM, Holtzel A, Walter J, Gunther J, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333CrossRef
    96.Salman JAS, Alimer DA (2014) Antibacterial and antiadhesive properties of a biosurfactant isolated from Lactobacillus rhamnosus against some bacteria causing UTI in Iraqi women. Int J Curr Res 6:5368–5374
    97.Behnken S, Hertweck C (2012) Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 96:61–67CrossRef
    98.Letzel AC, Pidot SJ, Hertweck C (2013) A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 30:392–428CrossRef
    99.Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105:2128–2133CrossRef
    100.Behnken S, Hertweck C (2012) Cryptic polyketide synthase genes in non-pathogenic Clostridium spp. PLoS One 7(1), e29609CrossRef
    101.Zhang J, Liangcheng D, Liu F, Xu F, Hu B, Venturi V, Qian G (2014) Involvement of both PKS and NRPS in antibacterial activity in Lysobacter enzymogenes OH11. FEMS Microbiol Lett 355:170–176CrossRef
    102.Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760CrossRef
    103.Cooper DG, Zajic JE, Gerson DF, Manninen KI (1980) Isolation and identification of biosurfactants produced during anaerobic growth of Clostridium pasteurianum. J Ferment Technol 58:83–86
    104.Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73:444S–450S
    105.Akatsu H, Iwabuchi N, Xiao JZ, Matsuyama Z, Kurihara R, Okuda K, Yamamoto T, Maruyama M (2013) Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. J Parenter Enteral Nutr 37:631–640CrossRef
    106.Gill HS, Rutherfurd KJ, Cross ML, Gopal PK (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74:833–839
    107.Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, Yoshiya K, Matsushima A, Sumi Y, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H (2006) Altered gut flora and environment in patients with severe SIRS. J Trauma 60:126–133CrossRef
    108.Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRef
    109.Troy EB, Kasper DL (2010) Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci 15:25–34CrossRef
    110.Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper D, Kasper L (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185:4101–4108CrossRef
    111.Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper D, Kasper L (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:487–495CrossRef
    112.Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA (2013) Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 4:1465. doi:10.​1038/​ncomms2478 CrossRef
    113.O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693CrossRef
    114.Davis CD, Milner JA (2009) Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem 20:743–752CrossRef
    115.O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205CrossRef
    116.Leah D, Whigham LD, Mark E, Cook ME, Richard L, Atkinson RL (2000) Conjugated linoleic acid: implications for human health. Pharmacol Res 42:503–510CrossRef
    117.Bassaganya-Riera J, Hontecillas R, Horne WT, Sandridge M, Herfarth HH, Bloomfeld R, Isaacs KL (2012) Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn’s disease. Clin Nutr 31:721–727CrossRef
    118.Chung SH, Kim IH, Park HG, Kang HS, Yoon CS, Jeong HY, Choi NJ, Kwon EG, Kim YJ (2008) Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation. J Agric Food Chem 56:3311–3316CrossRef
    119.Jiang J, Bjorck L, Fonden R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85:95–102CrossRef
    120.Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364CrossRef
    121.Möller NP, Scholz-Arhens KE, Roos N, Sherezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47(4):171–182CrossRef
    122.Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides – opportunities for designing future foods. Curr Pharm Des 9:1297–1308CrossRef
    123.Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295CrossRef
    124.Raikos V, Dassios T (2014) Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Sci Technol 94:91–101CrossRef
    125.Gobbetti M, Minervini F, Rizzello CG (2004) Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. Int J Dairy Technol 57:173–188CrossRef
    126.Korhonen H, Pihlanto A (2001) Food-derived bioactive peptides – opportunities for designing future foods. Curr Pharm Des 9:1297–1308CrossRef
    127.Matar C, LeBlanc JG, Martin L, Perdigón G (2003) Biologically active peptides released in fermented milk: role and functions. In: Farnworth ER (ed) Handbook of fermented functional foods. Functional foods and nutraceuticals series. CRC Press, Florida, pp 177–201
    128.Nakamura T, Hirota T, Mizushima K, Ohki K, Naito Y, Yamamoto N, Yoshikawa T (2013) Milk-derived peptides, Val-Pro-Pro and Ile-Pro-Pro, attenuate atherosclerosis development in apolipoprotein E-deficient mice: a preliminary study. J Med Food 16:396–403CrossRef
    129.Ueno K, Mizuno S, Yamamoto N (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett Appl Microbiol 39:313–318CrossRef
    130.Urista CM, Fernandez RA, Rodriguez FR, Cuenca AA, Jurado AT (2011) Review: production and functionality of active peptides from milk. Food Sci Technol Int 17:293–317CrossRef
    131.Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y (2011) Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: a pilot randomized, placebo-controlled trial. Menopause 18:563–574CrossRef
    132.Wu J, Oka J, Ezaki J, Ohtomo T, Ueno T, Uchiyama S, Toda T, Uehara M, Ishimi Y (2007) Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controlled trial. Menopause 14:866–874CrossRef
    133.Akaza H, Miyanaga N, Takashima N et al (2004) Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol 34:86–89CrossRef
    134.Lund TD, Munson DJ, Haldy ME, Setchell KD, Lephart ED, Handa RJ (2004) Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod 70:1188–1195CrossRef
    135.Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med, http://​dx.​doi.​org/​10.​1155/​2013/​270418
    136.Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45CrossRef
    137.Saulnier DM, Kolida S, Gibson GR (2009) Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr Pharm Des 15:1403–1414CrossRef
    138.Jayashree S, Jayaraman K, Kalaichelvan G (2010) Isolation, screening and characterization of riboflavin producing lactic acid bacteria from Katpadi, Vellore district. Recent Res Sci Technol 2:83–88
    139.Papastoyiannidis G, Polychroniadou A, Michaelidou AM, Alichanidis E (2006) Fermented milks fortified with B-group vitamins: vitamin stability and effect on resulting products. Food Sci Technol Int 12:521–529CrossRef
    140.Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008) High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–3294CrossRef
    141.Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359CrossRef
    142.Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22:140–146CrossRef
    143.Ichihashi T, Takagishi Y, Uchida K, Yamada H (1992) Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr 122:506–512
    144.Gu Q, Zhang C, Song D, Li P, Zhu X (2015) Enhancing vitamin B 12 content in soy-yogurt by Lactobacillus reuteri. Int J food Microbiol 206:56–59CrossRef
    145.Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134CrossRef
    146.Chukwu EE, Nwaokorie FO, Coker AO (2014) Role of anaerobes as probiotic organisms. Int J Food Nutr Saf 5:74–97
    147.Drisko JA, Giles CK, Bischoff BJ (2003) Probiotics in health maintenance and disease prevention. Altern Med Rev 8:143–155
    148.Patel A, Shah N, Prajapati JB (2014) Clinical application of probiotics in the treatment of Helicobacter pylori infection – a brief review. J Microbiol Immunol Infect 47:429–437CrossRef
    149.Fuller R (ed) (2012) Probiotics: the scientific basis. Springer Science, Netherlands
    150.El-Henshasy H, Malik K, AbdMalek R, Othman NZ, Elsayed EA, Wadaan M (2016) Anaerobic probiotics: the key microbes for human health. Adv Biochem Eng Biotechnol. doi:10.​1007/​10_​2016_​14
    151.Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416
    152.Raghunand N, Gatenby RA, Gillies RJ (2014) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76:S11–S22CrossRef
    153.Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61CrossRef
    154.Lee CH (2012) Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives. Appl Microbiol Biotechnol 93:517–523CrossRef
    155.Fox ME, Lemmon MJ, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3:173–178
    156.Lambin P, Theys J, Landuyt W, Rijken R, van der Kogel A, van der Schueren E, Hodgkiss R, Fowler J, Nuyts S, de Bruijn E, Van Mellaert L, Anné J (1998) Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe 4:183–188CrossRef
    157.Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J (2002) Clostridium spores for tumor-specific drug delivery. Anticancer Drugs 13:115–125CrossRef
    158.Theys J, Landuyt AW, Nuyts S, Van Mellaert L, Lambin P, Anne J (2001) Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect Prev 25:548–557
    159.Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J et al (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41
    160.Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544
    161.Fujimori M, Amano J, Taniguchi S (2002) The genus Bifidobacterium for cancer gene therapy. Curr Opin Drug Discov Devel 5:200–203
    162.Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, Taniguchi S (2001) Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 66:165–170CrossRef
    163.Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, Goebel R, Szalay AA (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22:313–320CrossRef
    164.Jean ATS, Zhang M, Forbes NS (2008) Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol 19:511–517CrossRef
    165.Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, Cavagnolo R, Cahill A, Clairmont C, Sznol M (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10:737–744CrossRef
    166.Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152CrossRef
    167.Minton NP (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1:237–242CrossRef
    168.Fujimori M (2006) Genetically engineered Bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer 13:27–31CrossRef
    169.Kasinskas RW, Forbes NS (2007) Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res 67:3201–3209CrossRef
    170.Liu SC, Minton NP, Giaccia AJ, Brown JM (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 9:291–296CrossRef
    171.Theys J, Lambin P (2015) Clostridium to treat cancer: dream or reality? Ann Transl Med 3:S21
    172.Jean ATS, Swofford CA, Panteli JT, Brentzel ZJ, Forbes NS (2014) Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Mol Ther 22:1266–1274
    173.Wong S, Slavcev RA (2015) Treating cancer with infection: a review on bacterial cancer therapy. Lett Appl Microbiol 61:107–112CrossRef
    174.Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, Hasty J, Bhatia SN (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7:289ra84CrossRef
    175.Ringel Y, Quigley EMM, Lin HC (2012) Using probiotics in gastrointestinal disorders. Am J Gastroenterol Suppl 1:34–40CrossRef
    176.Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002CrossRef
    177.Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88–96CrossRef
    178.Aroniadis OC, Brandt LJ (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29:79–84CrossRef
    179.Colman RJ, Rubin DT (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis 8:1569–1581CrossRef
    180.Campieri M, Gionchetti P (1999) Probiotics in inflammatory bowel disease: new insights to pathogenesis or a possible therapeutic alternative. Gastroenterology 116:1246–1249CrossRef
    181.Linskens RK, Huijsdens XW, Savelkoul PH, Vandenbroucke-Grauls CM, Meuwissen SG (2001) The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand J Gastroenterol Suppl 234:29–40CrossRef
    182.Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193
    183.Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRef
    184.Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91:48–55
    185.Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, Rodriguez JM (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969CrossRef
    186.Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638CrossRef
    187.Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRef
    188.Hooper LV, Falk PG, Gordon JI (2000) Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol 3:79–85CrossRef
    189.Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307CrossRef
    190.Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723CrossRef
    191.Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin FP, Rezzi S, Ross A, Kochhar S, Holmes E, Nicholson JK (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219CrossRef
    192.Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621CrossRef
    193.Lee YK, Puong KY, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925–930CrossRef
    194.Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485CrossRef
    195.Martin FP, Sprenger N, Montoliu I, Rezzi S, Kochhar S, Nicholson JK (2010) Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 9:5284–5295CrossRef
    196.Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, Pere-Trepat E, Rochat F, Cherbut C, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:205
    197.Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568CrossRef
    198.Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–1178CrossRef
    199.Wells JM, Rossi O, Meijerink M, van Baarlen P (2010) Microbes and health sackler colloquium: epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A 108(Suppl 1):4607–4614
    200.Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR (2006) Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 44:3980–3988CrossRef
    201.Abrahamsson TR, Jakobsson HE, Andersson AF, Björksten B, Engstrand L, Jenmalm MC (2013) Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 44:842–850CrossRef
    202.Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, Mohn WW, Turvey SE, Finlay BB (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152. doi:10.​1126/​scitranslmed.​aab2271 CrossRef
    203.Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5(178):178ra41. doi:10.​1126/​scitranslmed.​3005687 CrossRef
    204.Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:26164, http://​dx.​doi.​org/​10.​3402/​mehd.​v26.​26164
    205.Modi SR, Collins JJ, Relman DA (2015) Antibiotics and the gut microbiota. J Clin Invest 124:4212–4218CrossRef
  • 作者单位:Gashaw Mamo (18)

    18. Biotechnology, Center for Chemistry & Chemical Engineering, Lund University, 221 00, Lund, Sweden
  • 丛书名:Anaerobes in Biotechnology
  • ISBN:978-3-319-45651-5
  • 卷排序:156
文摘
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700