Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive
详细信息    查看全文
  • 作者:Ming Li (1) (2)
    Lu-Lu Zhang (1) (3)
    Xue-Lin Yang (1)
    Yun-Hui Huang (4)
    Hua-Bin Sun (1)
    Shi-Bing Ni (1)
    Hua-Chao Tao (1)

    1. College of Materials and Chemical Engineering
    ; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid ; China Three Gorges University ; 8 Daxue Road ; Yichang ; 443002 ; Hubei ; China
    2. College of Mechanical & Power Engineering
    ; China Three Gorges University ; 8 Daxue Road ; Yichang ; 443002 ; Hubei ; China
    3. CAS Key Laboratory of Materials for Energy Conversion
    ; Shanghai Institute of Ceramics ; Chinese Academy of Sciences ; Shanghai ; 200050 ; China
    4. School of Materials Science and Engineering
    ; State Key Laboratory of Material Processing and Die & Mould Technology ; Huazhong University of Science and Technology ; 1037 Luoyu Road ; Wuhan ; 430074 ; Hubei ; China
  • 关键词:Lithium ; ion battery ; Cathode ; Lithium iron silicate ; Ascorbic acid
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:19
  • 期:2
  • 页码:415-421
  • 全文大小:1,250 KB
  • 参考文献:1. Hu M, Pang X, Zhou Z (2013) J Power Sources 237:229鈥?42 CrossRef
    2. Nyt茅n A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156鈥?60 CrossRef
    3. Zhu H, Wu X, Zan L, Zhang Y (2014) Electrochim Acta 117:34鈥?0 CrossRef
    4. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Electrochem Solid-State Lett 11:A60鈥揂63 CrossRef
    5. Li LM, Guo HJ, Li XH, Wang ZX, Peng WJ, Xiang KX, Cao X (2009) J Power Sources 189:45鈥?0 CrossRef
    6. Zhang LL, Duan S, Yang XL, Peng G, Liang G, Huang YH, Jiang Y, Ni SB, Li M (2013) ACS Appl Mater Interfaces 5:12304鈥?2309 CrossRef
    7. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188鈥?194 CrossRef
    8. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Energy Environ Sci 4:269鈥?84 CrossRef
    9. Qin G, Ma Q, Wang C (2014) Electrochim Acta 115:407鈥?15 CrossRef
    10. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525鈥?528 CrossRef
    11. Mao WF, Zhang NN, Tang ZY, Feng YQ, Ma CX (2014) J Alloys Compd 588:25鈥?9 CrossRef
    12. Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) J Phys Chem C 116:12401鈥?2408 CrossRef
    13. Deng C, Zhang S, Yang SY (2009) J Alloys Compd 487:L18鈥揕23 CrossRef
    14. Gao K, Zhang J, Li SD (2013) Mater Chem Phys 139:550鈥?56 CrossRef
    15. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) J Am Chem Soc 133:13031鈥?3035 CrossRef
    16. Guo H, Cao X, Li X, Li L, Li X, Wang Z, Peng W, Li Q (2010) Electrochim Acta 55:8036鈥?042 CrossRef
    17. Kam KC, Gustafsson T, Thomas JO (2011) Solid State Ionics 192:356鈥?59 CrossRef
    18. Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y (2011) J Mater Chem 21:9506鈥?512 CrossRef
    19. Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) J Power Sources 198:229鈥?35 CrossRef
    20. Zuo P, Wang T, Cheng G, Du C, Ma Y, Cheng X, Yin G (2013) J Solid State Electrochem 17:1955鈥?959 CrossRef
    21. Zhou H, Einarsrud MA, Vullum-Bruer F (2012) Solid State Ionics 225:585鈥?89 CrossRef
    22. Wu X, Wang X, Zhang Y (2013) ACS Appl Mater Interfaces 5:2510鈥?516 CrossRef
    23. Deng C, Zhang S, Yang SY, Fu BL, Ma L (2011) J Power Sources 196:386鈥?92 CrossRef
    24. Hao H, Wang J, Liu J, Huang T, Yu A (2012) J Power Sources 210:397鈥?01 CrossRef
    25. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) J Electroanal Chem 644:150鈥?54 CrossRef
    26. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Electrochim Acta 55:8482鈥?489 CrossRef
    27. Huang X, Li X, Wang H, Pan Z, Qu M, Yu Z (2010) Electrochim Acta 55:7362鈥?366 CrossRef
    28. Peng G, Zhang LL, Yang XL, Duan S, Liang G, Huang YH (2013) J Alloys Compd 570:1鈥? CrossRef
    29. Huang B, Zheng X, Lu M (2012) J Alloys Compd 525:110鈥?13 CrossRef
    30. Zhao Y, Li J, Wang N, Wu C, Ding Y, Guan L (2012) J Mater Chem 22:18797鈥?8800 CrossRef
    31. Zhou H, Lou F, Vullum PE, Einarsrud MA, Chen D, Vullum-Bruer F (2013) Nanotechnology 24:435703 CrossRef
    32. Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) J Alloys Compd 511:101鈥?06 CrossRef
    33. Yan Z, Cai S, Zhou X, Zhao Y, Miao L (2012) J Electrochem Soc 159:A894鈥揂898 CrossRef
    34. Yang J, Kang X, He D, Peng T, Hu L, Mu S (2013) J Power Sources 242:171鈥?78 CrossRef
    35. Nadherna M, Dominko R, Hanzel D, Reiter J, Gaberscek M (2009) J Electrochem Soc 156:A619鈥揂626 CrossRef
    36. Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) J Power Sources 178:842鈥?47 CrossRef
    37. Nyt茅n A, Stjerndahl M, Rensmo H, Siegbahn H, Armand M, Gustafsson T, Edstr枚m K, Thomas JO (2006) J Mater Chem 16:3483鈥?488 CrossRef
    38. Karthikeyan K, Aravindan V, Lee SB, Jang IC, Lim HH, Park GJ, Yoshio M, Lee YS (2010) J Alloys Compd 504:224鈥?27 CrossRef
    39. Huang X, Chen H, Zhou S, Chen Y, Yang J, Ren Y, Wang H, Qu M, Pan Z, Yu Z (2012) Electrochim Acta 60:239鈥?43 CrossRef
    40. Gong ZL, Li YX, Yang Y (2006) Electrochem Solid-State Lett 9:A542鈥揂544 CrossRef
    41. Yang J, Kang X, Hu L, Gong X, He D, Peng T, Mu S (2013) J Alloys Compd 572:158鈥?62 CrossRef
    42. Devaraju MK, Tomai T, Honma I (2013) Electrochim Acta 109:75鈥?1 CrossRef
    43. Chen J, Wang S, Whittingham MS (2007) J Power Sources 174:442鈥?48 CrossRef
    44. Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) Electrochem Solid-State Lett 8:A484鈥揂487 CrossRef
    45. Tarascon JM, Recham N, Armand M, Chotard JN, Barpanda P, Walker W, Dupont L (2010) Chem Mater 22:724鈥?39 CrossRef
    46. Croce F, D鈥?Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid-State Lett 5:A47鈥揂50 CrossRef
    47. Rangappa D, Sone K, Zhou Y, Kudo T, Honma I (2011) J Mater Chem 21:15813鈥?5818 CrossRef
    48. Ni JF, Han Y, Liu J, Wang H, Gao L (2013) ECS Electrochem Lett 2:A3鈥揂5 CrossRef
    49. Tao L, Rousse G, Chotard JN, Dupont L, Bruy猫re S, Han啪el D, Mali G, Dominko R, Levasseur S, Masquelier C (2014) J Mater Chem A 2:2060鈥?070 CrossRef
    50. Li D, Xie R, Tian M, Ma S, Gou L, Fan X, Shi Y, Yong HTH, Hao L (2014) J Mater Chem A 2:4375鈥?383 CrossRef
    51. Hu YQ, Doeff MM, Kostecki R, Finones R (2004) J Electrochem Soc 151:A1279鈥揂1285 CrossRef
    52. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) J Power Sources 163:180鈥?84 CrossRef
    53. Lv D, Bai J, Zhang P, Wu S, Li Y, Wen W, Jiang Z, Mi J, Zhu Z, Yang Y (2013) Chem Mater 25:2014鈥?020 CrossRef
    54. Nyt茅n A, Kamali S, H盲ggstr枚m L, Gustafsson T, Thomas JO (2006) J Mater Chem 16:2266鈥?272 CrossRef
    55. Xu J, Hu Y, Liu T, Wu X (2014) Nano Energy 5:67鈥?3 CrossRef
    56. Fu R, Li Y, Yang H, Zhang Y, Cheng X (2013) J Electrochem Soc 160:A3048鈥揂3053 CrossRef
    57. Chen Y, Zhang D, Bian X, Bie X, Wang C, Du F, Jang M, Chen G, Wei Y (2012) Electrochim Acta 79:95鈥?01 CrossRef
    58. Zhou X, Liu Y, Guo Y (2009) Electrochim Acta 54:2253鈥?258 CrossRef
    59. Andersson AS, Thomas JO (2001) J Power Sources 97鈥?8:498鈥?02 CrossRef
    60. Lespade P, Marchand A, Couzi M, Cruege F (1984) Carbon 22:375鈥?85 CrossRef
    61. Baddour-Hadjean R, Pereira-Ramos J-P (2010) Chem Rev 110:1278鈥?319 CrossRef
    62. Doeff MM, Wilcox JD, Yu R, Aumentado A, Marcinek M, Kostecki R (2008) J Solid State Electrochem 12:995鈥?001 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Carbon-coated Li2FeSiO4 composite (LFS/C-AA) was synthesized via a refluxing-assisted solid-state reaction by using ascorbic acid as additive and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, galvanostatic charge/discharge measurements, and electrochemical impedance spectra (EIS) tests. The results show that ascorbic acid can to some extent prohibit the oxidation of Fe2+ during the synthesis process, and the pyrolytic carbon from ascorbic acid shows higher electronic conductivity and improves the degree of graphitization of residual carbon in the LFS/C-AA composite. Compared with LFS/C prepared without ascorbic acid, LFS/C-AA displays better electrochemical performance. The desirable property is attributed to the reduced particle size, the enhanced electronic conductivity, and the improved diffusion coefficient of lithium ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700