Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development
详细信息    查看全文
  • 作者:Ian T Rossman (1) (2) (3)
    Lulu Lin (1)
    Katherine M Morgan (1) (4)
    Marissa DiGiovine (1) (5)
    Elise K Van Buskirk (1) (6)
    Silky Kamdar (1)
    James H Millonig (1) (7)
    Emanuel DiCicco-Bloom (1) (2)
  • 关键词:Autism ; Engrailed2 ; IGF1 ; Cerebellum ; Neurodevelopment ; Cell cycle ; Proliferation ; Phospho ; S6 kinase
  • 刊名:Molecular Autism
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:5
  • 期:1
  • 全文大小:987 KB
  • 参考文献:1. Davis CA, Noble-Topham SE, Rossant J, Joyner AL: Expression of the homeo box-containing gene En-2 delineates a specific region of the developing mouse brain. / Genes Dev 1988, 2:361鈥?71.
    2. Joyner AL: Engrailed, Wnt and Pax genes regulate midbrain鈥揾indbrain development. / Trends Genet 1996, 12:15鈥?0.
    3. Bauman ML, Kemper TL: Neuroanatomic observations of the brain in autism: a review and future directions. / Int J Dev Neurosci 2005, 23:183鈥?87.
    4. Piven J, Saliba K, Bailey J, Arndt S: An MRI study of autism: the cerebellum revisited. / Neurology 1997, 49:546鈥?51.
    5. Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG: A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. / Autism Res 2009, 2:246鈥?57.
    6. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, / et al.: Consensus paper: pathological role of the cerebellum in autism. / Cerebellum 2012, 11:777鈥?07.
    7. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S, Bruse SE, Tischfield S, Smith BJ, Zimmerman RA, / et al.: Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. / Am J Hum Genet 2005, 77:851鈥?68.
    8. Brune CW, Korvatska E, Allen-Brady K, Cook EH Jr, Dawson G, Devlin B, Estes A, Hennelly M, Hyman SL, McMahon WM, / et al.: Heterogeneous association between Engrailed-2 and autism in the CPEA network. / Am J Med Genet B Neuropsychiatr Genet 2008, 147B:187鈥?93.
    9. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH: Association of the homeobox transcription factor, ENGRAILED 2, with autism spectrum disorder. / Mol Psychiatry 2004, 9:474鈥?84.
    10. Sen B, Singh AS, Sinha S, Chatterjee A, Ahmed S, Ghosh S, Usha R: Family-based studies indicate association of Engrailed 2 gene with autism in an Indian population. / Genes Brain Behav 2010, 9:248鈥?55.
    11. Wang L, Jia M, Yue W, Tang F, Qu M, Ruan Y, Lu T, Zhang H, Yan H, Liu J, / et al.: Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. / Am J Med Genet B Neuropsychiatr Genet 2008, 147B:434鈥?38.
    12. Yang P, Shu BC, Hallmayer JF, Lung FW: Intronic single nucleotide polymorphisms of engrailed homeobox 2 modulate the disease vulnerability of autism in a Han Chinese population. / Neuropsychobiology 2010, 62:104鈥?15.
    13. Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J: Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. / Science 1991, 251:1239鈥?243.
    14. Millen KJ, Wurst W, Herrup K, Joyner AL: Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. / Development 1994, 120:695鈥?06.
    15. Millen KJ, Hui CC, Joyner AL: A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. / Development 1995, 121:3935鈥?945.
    16. Kuemerle B, Zanjani H, Joyner A, Herrup K: Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. / J Neurosci 1997, 17:7881鈥?889.
    17. Sillitoe RV, Vogel MW, Joyner AL: Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. / J Neurosci 2010, 30:10015鈥?0024.
    18. Baader SL, Sanlioglu S, Berrebi AS, Parker-Thornburg J, Oberdick J: Ectopic overexpression of Engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. / J Neurosci 1998, 18:1763鈥?773.
    19. Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J: Selective disruption of 鈥渓ate onset鈥?sagittal banding patterns by ectopic expression of Engrailed-2 in cerebellar Purkinje cells. / J Neurosci 1999, 19:5370鈥?379.
    20. Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL: Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. / J Comp Neurol 2004, 472:87鈥?9.
    21. Davis CA, Joyner AL: Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene Int-1 diverge during mouse development. / Genes Dev 1988, 2:1736鈥?744.
    22. Wilson SL, Kalinovsky A, Orvis GD, Joyner AL: Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types. / Cerebellum 2011, 10:356鈥?72.
    23. Fujita S: Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. / J Cell Biol 1967, 32:277鈥?87.
    24. Heintz N: / The GENSAT Project at Rockefeller University. 2013. In http://www.gensat.org/index.html
    25. Ritvo ER, Freeman BJ, Mason-Brothers A, Mo A, Ritvo AM: Concordance for the syndrome of autism in 40 pairs of afflicted twins. / Am J Psychiatry 1985, 142:74鈥?7.
    26. Folstein S, Rutter M: Infantile autism: a genetic study of 21 twin pairs. / J Child Psychol Psychiatry 1977, 18:297鈥?21.
    27. Abrahams BS, Geschwind DH: Advances in autism genetics: on the threshold of a new neurobiology. / Nat Rev Genet 2008, 9:341鈥?55.
    28. Deng W, Aimone JB, Gage FH: New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? / Nat Rev Neurosci 2010, 11:339鈥?50.
    29. Ming GL, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. / Neuron 2011, 70:687鈥?02.
    30. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ: Autism and abnormal development of brain connectivity. / J Neurosci 2004, 24:9228鈥?231.
    31. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR: Brain structural abnormalities in young children with autism spectrum disorder. / Neurology 2002, 59:184鈥?92.
    32. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. / Cereb Cortex 2007, 17:951鈥?61.
    33. McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, Yip L, Murphy DG, Chua SE: Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. / Brain 2005, 128:268鈥?76.
    34. Schumann CM, Nordahl CW: Bridging the gap between MRI and postmortem research in autism. / Brain Res 2010, 1380:175鈥?86.
    35. Asano E, Chugani DC, Muzik O, Behen M, Janisse J, Rothermel R, Mangner TJ, Chakraborty PK, Chugani HT: Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction. / Neurology 2001, 57:1269鈥?277.
    36. Friede RL: Dating the development of human cerebellum. / Acta Neuropathol 1973, 23:48鈥?8.
    37. Tao Y, Black IB, DiCicco-Bloom E: Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). / J Comp Neurol 1996, 376:653鈥?63.
    38. Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E: Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. / J Neurosci 2002, 22:9244鈥?254.
    39. Hatten ME: Neuronal regulation of astroglial morphology and proliferation in vitro. / J Cell Biol 1985, 100:384鈥?96.
    40. Gao WO, Heintz N, Hatten ME: Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. / Neuron 1991, 6:705鈥?15.
    41. Reinhardt RR, Bondy CA: Insulin-like growth factors cross the blood-brain barrier. / Endocrinology 1994, 135:1753鈥?761.
    42. DiCicco-Bloom E, Townes-Anderson E, Black IB: Neuroblast mitosis in dissociated culture: regulation and relationship to differentiation. / J Cell Biol 1990, 110:2073鈥?086.
    43. Pincus DW, DiCicco-Bloom EM, Black IB: Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. / Nature 1990, 343:564鈥?67.
    44. Li B, DiCicco-Bloom E: Basic fibroblast growth factor exhibits dual and rapid regulation of cyclin D1 and p27 to stimulate proliferation of rat cerebral cortical precursors. / Dev Neurosci 2004, 26:197鈥?07.
    45. Ye W, Mairet-Coello G, Dicicco-Bloom E: DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain. / Histochem Cell Biol 2007, 127:195鈥?03.
    46. Carey RG, Li B, DiCicco-Bloom E: Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. / J Neurosci 2002, 22:1583鈥?591.
    47. Wagner JP, Black IB, DiCicco-Bloom E: Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. / J Neurosci 1999, 19:6006鈥?016.
    48. Cheng Y, Tao Y, Black IB, DiCicco-Bloom E: A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. / J Neurobiol 2001, 46:220鈥?29.
    49. Smeyne RJ, Chu T, Lewin A, Bian F, Sanlioglu S, Kunsch C, Lira SA, Oberdick J: Local control of granule cell generation by cerebellar Purkinje cells. / Mol Cell Neurosci 1995, 6:230鈥?51.
    50. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP: Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. / Dev Biol 2004, 270:393鈥?10.
    51. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H: Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. / Neuroscience 1997, 78:419鈥?30.
    52. Lin X, Bulleit RF: Insulin-like growth factor I (IGF-I) is a critical trophic factor for developing cerebellar granule cells. / Brain Res 1997, 99:234鈥?42.
    53. Rios I, Alvarez-Rodriguez R, Marti E, Pons S: Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurons through Smad5 signaling. / Development 2004, 131:3159鈥?168.
    54. Kenney AM, Cole MD, Rowitch DH: Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. / Development 2003, 130:15鈥?8.
    55. Wallace VA: Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. / Curr Biol 1999, 9:445鈥?48.
    56. Rechler MM, Nissley SP: The nature and regulation of the receptors for insulin-like growth factors. / Annu Rev Physiol 1985, 47:425鈥?42.
    57. Pan W, Kastin AJ: Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. / Neuroendocrinology 2000, 72:171鈥?78.
    58. Wolf E, Wagner JP, Black IB, DiCicco-Bloom E: Cerebellar granule cells elaborate neurites before mitosis. / Brain Res Dev Brain Res 1997, 102:305鈥?08.
    59. Williams EJ, Mittal B, Walsh FS, Doherty P: FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules. / J Cell Sci 1995,108(Pt 11):3523鈥?530.
    60. Bondy CA, Cheng CM: Signaling by insulin-like growth factor 1 in brain. / Eur J Pharmacol 2004, 490:25鈥?1.
    61. Wiedmann M, Wang X, Tang X, Han M, Li M, Mao Z: PI3K/Akt-dependent regulation of the transcription factor myocyte enhancer factor-2 in insulin-like growth factor-1- and membrane depolarization-mediated survival of cerebellar granule neurons. / J Neurosci Res 2005, 81:226鈥?34.
    62. Cui H, Meng Y, Bulleit RF: Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. / Dev Brain Res 1998, 111:177鈥?88.
    63. Miller TM, Tansey MG, Johnson EM Jr, Creedon DJ: Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells. / J Biol Chem 1997, 272:9847鈥?853.
    64. Chin PC, D鈥橫ello SR: Survival of cultured cerebellar granule neurons can be maintained by Akt-dependent and Akt-independent signaling pathways. / Brain Res 2004, 127:140鈥?45.
    65. Ye P, Xing Y, Dai Z, D鈥橢rcole AJ: In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors. / Brain Res 1996, 95:44鈥?4.
    66. Torres-Aleman I, Villalba M, Nieto-Bona MP: Insulin-like growth factor-I modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. / Neuroscience 1998, 83:321鈥?34.
    67. Zhu D, Lipsky RH, Marini AM: Co-activation of the phosphatidylinositol-3-kinase/Akt signaling pathway by N-methyl-D-aspartate and TrkB receptors in cerebellar granule cell neurons. / Amino Acids 2002, 23:11鈥?7.
    68. Gunn-Moore FJ, Williams AG, Toms NJ, Tavare JM: Activation of mitogen-activated protein kinase and p70S6 kinase is not correlated with cerebellar granule cell survival. / Biochem J 1997,324(Pt 2):365鈥?69.
    69. Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, Hershey JW, Blenis J, Pende M, Sonenberg N: The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. / EMBO J 2006, 25:2781鈥?791.
    70. Wassef M, Chedotal A, Cholley B, Thomasset M, Heizmann CW, Sotelo C: Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. / J Comp Neurol 1992, 323:519鈥?36.
    71. Wassef M, Cholley B, Heizmann CW, Sotelo C: Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. / J Comp Neurol 1992, 323:537鈥?50.
    72. Logan C, Hanks MC, Noble-Topham S, Nallainathan D, Provart NJ, Joyner AL: Cloning and sequence comparison of the mouse, human, and chicken engrailed genes reveal potential functional domains and regulatory regions. / Dev Genet 1992, 13:345鈥?58.
    73. Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB: Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. / J Histochem Cytochem 2003, 51:1681鈥?688.
    74. Foucher I, Montesinos ML, Volovitch M, Prochiantz A, Trembleau A: Joint regulation of the MAP1B promoter by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. / Development 2003, 130:1867鈥?876.
    75. Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H: Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. / Proc Natl Acad Sci USA 1999, 96:9415鈥?420.
    76. Lin X, Bulleit RF: Cell intrinsic mechanisms regulate mouse cerebellar granule neuron differentiation. / Neurosci Lett 1996, 220:81鈥?4.
    77. Kienlen Campard P, Crochemore C, Rene F, Monnier D, Koch B, Loeffler JP: PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. / DNA Cell Biol 1997, 16:323鈥?33.
    78. Dahmane N, Ruiz i Altaba A: Sonic hedgehog regulates the growth and patterning of the cerebellum. / Development 1999, 126:3089鈥?100.
    79. Ye P, D鈥橢rcole J: Insulin-like growth factor I (IGF-I) regulates IGF binding protein-5 gene expression in the brain. / Endocrinology 1998, 139:65鈥?1.
    80. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. / Mol Cell Biol 2004, 24:200鈥?16.
    81. O鈥橰eilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, / et al.: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. / Cancer Res 2006, 66:1500鈥?508.
    82. Nedelec S, Foucher I, Brunet I, Bouillot C, Prochiantz A, Trembleau A: Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. / Proc Natl Acad Sci USA 2004, 101:10815鈥?0820.
    83. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G: Phosphorylation and activation of p70s6k by PDK1. / Science 1998, 279:707鈥?10.
    84. Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, Marette A: Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. / Proc Natl Acad Sci USA 2007, 104:14056鈥?4061.
    85. Alder J, Lee KJ, Jessell TM, Hatten ME: Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. / Nat Neurosci 1999, 2:535鈥?40.
    86. Flora A, Klisch TJ, Schuster G, Zoghbi HY: Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. / Science 2009, 326:1424鈥?427.
    87. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL: Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. / Development 2004, 131:5581鈥?590.
    88. Aruga J, Inoue T, Hoshino J, Mikoshiba K: Zic2 controls cerebellar development in cooperation with Zic1. / J Neurosci 2002, 22:218鈥?25.
    89. Brown LY, Kottmann AH, Brown S: Immunolocalization of Zic2 expression in the developing mouse forebrain. / Gene Expr Patterns 2003, 3:361鈥?67.
    90. Lee HY, Angelastro JM, Kenney AM, Mason CA, Greene LA: Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells. / Dev Neurobiol 2012, 72:789鈥?04.
    91. Xiang C, Baubet V, Pal S, Holderbaum L, Tatard V, Jiang P, Davuluri RV, Dahmane N: RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. / Cell Death Differ 2012, 19:692鈥?02.
    92. Tatard VM, Xiang C, Biegel JA, Dahmane N: ZNF238 is expressed in postmitotic brain cells and inhibits brain tumor growth. / Cancer Res 2010, 70:1236鈥?246.
    93. Choi Y, Borghesani PR, Chan JA, Segal RA: Migration from a mitogenic niche promotes cell-cycle exit. / J Neurosci 2005, 25:10437鈥?0445.
    94. Oberdick J: Evidence for a genetically encoded map of functional development in the cerebellum. / Histochemistry 1994, 102:1鈥?4.
    95. Ozol K, Hayden JM, Oberdick J, Hawkes R: Transverse zones in the vermis of the mouse cerebellum. / J Comp Neurol 1999, 412:95鈥?11.
    96. Sillitoe RV, Stephen D, Lao Z, Joyner AL: Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. / J Neurosci 2008, 28:12150鈥?2162.
    97. Solowska JM, Mazurek A, Weinberger L, Baird DH: Pontocerebellar axon guidance: neuropilin-1- and semaphorin 3A-sensitivity gradients across basilar pontine nuclei and semaphorin 3A variation across cerebellum. / Mol Cell Neurosci 2002, 21:266鈥?84.
    98. Herrup K, Kuemerle B: The compartmentalization of the cerebellum. / Annu Rev Neurosci 1997, 20:61鈥?0.
    99. Benayed R, Choi J, Matteson PG, Gharani N, Kamdar S, Brzustowicz LM, Millonig JH: Autism-associated haplotype affects the regulation of the homeobox gene, ENGRAILED 2. / Biol Psychiatry 2009, 66:911鈥?17.
    100. Choi J, Ababon MR, Soliman M, Lin Y, Brzustowicz LM, Matteson PG, Millonig JH: Autism Associated Gene, ENGRAILED2, and Flanking Gene Levels Are Altered in Post-Mortem Cerebellum. / PLoS One 2014,9(2):e87208. doi: 10.1371/journal.pone.0087208
    101. Amaral DG, Schumann CM, Nordahl CW: Neuroanatomy of autism. / Trends Neurosci 2008, 31:137鈥?45.
    102. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. / Arch Gen Psychiatry 2005, 62:1366鈥?376.
    103. Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR: Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. / Arch Neurol 1989, 46:689鈥?94.
    104. Villanueva R: The cerebellum and neuropsychiatric disorders. / Psychiat Res 2012, 198:527鈥?32.
    105. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M: Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. / Nature 2012, 488:647鈥?51.
    106. Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ: The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. / Brain Res Rev 2008, 59:185鈥?00.
    107. Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H: Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. / Dev Med Child Neurol 2006, 48:751鈥?55.
    108. Hoeffer CA, Sanchez E, Hagerman RJ, Mu Y, Nguyen DV, Wong H, Whelan AM, Zukin RS, Klann E, Tassone F: Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. / Genes Brain Behav 2012, 11:332鈥?41.
    109. Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, Calcagno E, Morello N, Landsberger N, Biffo S, / et al.: Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. / Hum Mol Genet 2011, 20:1182鈥?196.
    110. Pollizzi K, Malinowska-Kolodziej I, Stumm M, Lane H, Kwiatkowski D: Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. / Mol Cancer 2009, 8:38.
    111. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M: Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. / Proc Natl Acad Sci USA 2009, 106:2029鈥?034.
    112. Bozdagi O, Tavassoli T, Buxbaum JD: Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. / Molecular autism 2013, 4:9.
    113. Zoghbi HY, Bear MF: Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. / Cold Spring Harb Perspect Biol 2012., 4: doi:10.1101/cshperspect.a009886
  • 作者单位:Ian T Rossman (1) (2) (3)
    Lulu Lin (1)
    Katherine M Morgan (1) (4)
    Marissa DiGiovine (1) (5)
    Elise K Van Buskirk (1) (6)
    Silky Kamdar (1)
    James H Millonig (1) (7)
    Emanuel DiCicco-Bloom (1) (2)

    1. Department of Neuroscience & Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes, Lane, Piscataway, NJ, 08854, USA
    2. Department of Pediatrics (Child Neurology & Neurodevelopmental Disabilities), Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
    3. Center for Pediatric Neurology & Neurosurgery, Cleveland Clinic, Cleveland, OH, 44195, USA
    4. Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
    5. Department of Neurology, Children鈥檚 Hospital of Philadelphia, Philadelphia, PA, 19104, USA
    6. Department of Biology, Duke University, Durham, NC, 27708, USA
    7. Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
  • ISSN:2040-2392
文摘
Background The homeobox transcription factor Engrailed2 (En2) has been studied extensively in neurodevelopment, particularly in the midbrain/hindbrain region and cerebellum, where it exhibits dynamic patterns of expression and regulates cell patterning and morphogenesis. Because of its roles in regulating cerebellar development and evidence of cerebellar pathology in autism spectrum disorder (ASD), we previously examined an ENGRAILED2 association and found evidence to support EN2 as a susceptibility gene, a finding replicated by several other investigators. However, its functions at the cell biological level remain undefined. In the mouse, En2 gene is expressed in granule neuron precursors (GNPs) just as they exit the cell cycle and begin to differentiate, raising the possibility that En2 may modulate these developmental processes. Methods To define En2 functions, we examined proliferation, differentiation and signaling pathway activation in En2 knockout (KO) and wild-type (WT) GNPs in response to a variety of extracellular growth factors and following En2 cDNA overexpression in cell culture. In vivo analyses of cerebellar GNP proliferation as well as responses to insulin-like growth factor-1 (IGF1) treatment were also conducted. Results Proliferation markers were increased in KO GNPs in vivo and in 24-h cultures, suggesting En2 normally serves to promote cell cycle exit. Significantly, IGF1 stimulated greater DNA synthesis in KO than WT cells in culture, a finding associated with markedly increased phospho-S6 kinase activation. Similarly, there was three-fold greater DNA synthesis in the KO cerebellum in response to IGF1 in vivo. On the other hand, KO GNPs exhibited reduced neurite outgrowth and differentiation. Conversely, En2 overexpression increased cell cycle exit and promoted neuronal differentiation. Conclusions In aggregate, our observations suggest that the ASD-associated gene En2 promotes GNP cell cycle exit and differentiation, and modulates IGF1 activity during postnatal cerebellar development. Thus, genetic/epigenetic alterations of EN2 expression may impact proliferation, differentiation and IGF1 signaling as possible mechanisms that may contribute to ASD pathogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700