Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields
详细信息    查看全文
  • 作者:Lucia Leone (1)
    Salvatore Fusco (1)
    Alessia Mastrodonato (1)
    Roberto Piacentini (1)
    Saviana Antonella Barbati (1)
    Salvatore Zaffina (2)
    Giovambattista Pani (3)
    Maria Vittoria Podda (1)
    Claudio Grassi (1)
  • 关键词:Hippocampal neural stem cells ; CREB ; Cav1 channels ; Epigenetics ; Hes1 ; NeuroD1 and Neurogenin1 modulation ; Spatial memory
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:49
  • 期:3
  • 页码:1472-1486
  • 全文大小:
  • 参考文献:1. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186-91 CrossRef
    2. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687-02 CrossRef
    3. Zhao C, Teng EM, Summers RG Jr et al (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3-1 CrossRef
    4. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589-96 CrossRef
    5. Kee N, Teixeira CM, Wang AH et al (2007) Imaging activation of adult-generated granule cells in spatial memory. Nat Protoc 2:3033-044 CrossRef
    6. Marín-Burgin A, Schinder AF (2012) Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res 227:391-99 CrossRef
    7. Shors TJ, Miesegaes G, Beylin AV et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372-76 CrossRef
    8. Vivar C, van Praag H (2013) Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits 7:15 CrossRef
    9. Bellenchi GC, Volpicelli F, Piscopo V et al (2013) Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem 124:159-67 CrossRef
    10. Encinas JM, Sierra A (2012) Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behav Brain Res 227:433-39 CrossRef
    11. Taylor CJ, Jhaveri DJ, Bartlett PF (2013) The therapeutic potential of endogenous hippocampal stem cells for the treatment of neurological disorders. Front Cell Neurosci 7:5
    12. Brown J, Cooper-Kuhn CM, Kempermann G et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042-046 CrossRef
    13. Kempermann G (2012) New neurons for ‘survival of the fittest- Nat Rev Neurosci 13:727-36
    14. van Praag H, Christie BR, Sejnowski TJ et al (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427-3431 CrossRef
    15. Arias-Carrión O, Verdugo-Díaz L, Feria-Velasco A et al (2004) Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res 78:16-8 CrossRef
    16. Cuccurazzu B, Leone L, Podda MV et al (2010) Exposure to extremely low-frequency (50?Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 226:173-82 CrossRef
    17. Podda MV, Leone L, Barbati SA et al. (2014) Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. Eur J Neurosci
    18. Czéh B, Welt T, Fischer AK et al (2002) Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 52:1057-065 CrossRef
    19. Hansson Mild K, Alanko T, Decat G et al (2009) Exposure of workers to electromagnetic fields. A review of open questions on exposure assessment techniques. Int J Occup Saf Ergon 15:3-3
    20. Piacentini R, Ripoli C, Mezzogori D et al (2008) Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 215:129-39 CrossRef
    21. Hsieh J (2012) Orchestrating transcriptional control of adult neurogenesis. Genes Dev 26:1010-021 CrossRef
    22. Nieber F, Pieler T, Henningfeld KA (2009) Comparative expression analysis of the neurogenins in / Xenopus tropicalis and / Xenopus laevis. Dev Dyn 238:451-58 CrossRef
    23. Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8:221-41 CrossRef
    24. Bai G, Sheng N, Xie Z et al (2007) Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 13:283-97 CrossRef
    25. Boutin C, Hardt O, de Chevigny A et al (2010) NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci U S A 107:1201-216 CrossRef
    26. Kim EJ, Ables JL, Dickel LK et al (2011) Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE 6:e18472 CrossRef
    27. Lo L, Tiveron MC, Anderson DJ (1998) MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125:609-20
    28. Sun Y, Nadal-Vicens M, Misono S et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365-76 CrossRef
    29. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074-080 CrossRef
    30. Crepaldi L, Riccio A (2009) Chromatin learns to behave. Epigenetics 4:23-6 CrossRef
    31. Gr?ff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97-11 CrossRef
    32. Lee S, Lee SK (2010) Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 20:29-6 CrossRef
    33. Olynik BM, Rastegar M (2012) The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 3:81 CrossRef
    34. Cho B, Kim HJ, Kim H et al (2011) Changes in the histone acetylation patterns during the development of the nervous system. Exp Neurobiol 20:81-4 CrossRef
    35. Lilja T, Heldring N, Hermanson O (2013) Like a rolling histone: epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation. Biochim Biophys Acta 1830:2354-360 CrossRef
    36. Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813-29 CrossRef
    37. Miller CA, Campbell SL, Sweatt JD (2008) DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem 89:599-03 CrossRef
    38. Roth TL, Sweatt JD (2009) Regulation of chromatin structure in memory formation. Curr Opin Neurobiol 19:336-42 CrossRef
    39. Sharma SK (2010) Protein acetylation in synaptic plasticity and memory. Neurosci Biobehav Rev 34:1234-240 CrossRef
    40. Sui L, Wang Y, Ju LH et al (2012) Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 97:425-40 CrossRef
    41. Gr?ff J, Mansuy IM (2009) Epigenetic dysregulation in cognitive disorders. Eur J Neurosci 30:1- CrossRef
    42. Tsankova N, Renthal W, Kumar A et al (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355-67 CrossRef
    43. Grassi C, D’Ascenzo M, Torsello A et al (2004) Effects of 50?Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307-15 CrossRef
    44. Wolf FI, Torsello A, Tedesco B et al (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120-29 CrossRef
    45. Kempermann G, Gage FH (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 16:129-36 CrossRef
    46. Leone L, De Stefano ME, Del Signore A et al (2005) Axotomy of sympathetic neurons activates the metalloproteinase-2 enzymatic pathway. J Neuropathol Exp Neurol 64:1007-017 CrossRef
    47. Podda MV, D’Ascenzo M, Leone L et al (2008) Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neurons. J Physiol 586:803-15 CrossRef
    48. Podda MV, Leone L, Piacentini R et al (2012) Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes. Glia 60:1391-405 CrossRef
    49. Mayhew TM, Gundersen HJ (1996) If you assume, you can make an ass out of u and me- a decade of the disector for stereological counting of particles in 3D space. J Anat 188:1-5
    50. West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51-1 CrossRef
    51. Podda MV, Piacentini R, Barbati SA et al (2013) Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis. PLoS ONE. doi:10.1371/journal.pone.0073246
    52. D’Ascenzo M, Piacentini R, Casalbore P et al (2006) Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur J Neurosci 23:935-44 CrossRef
    53. Curcio L, Podda MV, Leone L et al (2013) Reduced d -serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain 136:1216-230 CrossRef
    54. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402-08 CrossRef
    55. Fusco S, Ripoli C, Podda MV et al (2012) A role for neuronal CREB (cAMP responsive element binding)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A 109:621-26 CrossRef
    56. Gaudillière B, Konishi Y, de la Iglesia N et al (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229-41 CrossRef
    57. Ince-Dunn G, Hall BJ, Hu SC et al (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49:683-95 CrossRef
    58. Olson JM, Asakura A, Snider L et al (2001) NeuroD2 is necessary for development and survival of central nervous system neurons. Dev Biol 234:174-87 CrossRef
    59. Pleasure SJ, Collins AE, Lowenstein DH (2000) Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J Neurosci 20:6095-105
    60. Di Lazzaro V, Capone F, Apollonio F et al (2013) A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low-frequency magnetic fields. Brain Stimul 6:469-76 CrossRef
    61. Machado S, Paes F, Velasques B et al (2012) Is rTMS an effective therapeutic strategy that can be used to treat anxiety disorders? Neuropharmacology 62:125-34 CrossRef
    62. Hatakeyama J, Kageyama R (2004) Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 15:83-9 CrossRef
    63. Ishibashi M, Ang SL, Shiota K et al (1995) Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136-148 CrossRef
    64. Tomita K, Nakanishi S, Guillemot F et al (1996) Mash1 promotes neuronal differentiation in the retina. Genes Cells 1:765-74 CrossRef
    65. Shimojo H, Ohtsuka T, Kageyama R (2011) Dynamic expression of Notch signaling genes in neural stem/progenitor cells. Front Neurosci 5:1- CrossRef
    66. Zhou X, Smith AJ, Waterhouse A et al (2013) Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 31:1511-522 CrossRef
    67. Fu J, Tay SS, Ling EA, Dheen ST (2006) High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49:1027-038 CrossRef
    68. Zhuang PW, Cui GZ, Zhang YJ et al (2013) Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. CNS Neurosci Ther 19:154-62 CrossRef
    69. Sinnegger-Brauns MJ, Huber IG, Koschak A et al (2009) Expression and 1,4-dihydropyridine-binding properties of brain l -type calcium channel isoforms. Mol Pharmacol 75:407-14 CrossRef
    70. Morgado-Valle C, Verdugo-Díaz L, García DE et al (1998) The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 291:217-30 CrossRef
    71. Olivares-Ba?uelos T, Navarro L, González A et al (2004) Differentiation of chromaffin cells elicited by ELF MF modifies gene expression pattern. Cell Biol Int 28:273-79 CrossRef
    72. Deisseroth K, Singla S, Toda H et al (2004) Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535-52 CrossRef
    73. Ramírez M, Hernández-Montoya J, Sánchez-Serrano SL et al (2012) GABA-mediated induction of early neuronal markers expression in postnatal rat progenitor cells in culture. Neuroscience 224:210-22 CrossRef
    74. West AE, Chen WG, Dalva MB et al (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98:11024-1031 CrossRef
    75. Jagasia R, Steib K, Englberger E et al (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29:7966-977 CrossRef
    76. Merz K, Herold S, Lie DC (2011) CREB in adult neurogenesis–master and partner in the development of adult-born neurons. Eur J Neurosci 33:1078-086 CrossRef
    77. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230-40 CrossRef
    78. Bito H, Takemoto-Kimura S (2003) Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 34:425-30 CrossRef
    79. Wang J, Weaver IC, Gauthier-Fisher A et al (2010) CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain. Dev Cell 18:114-25 CrossRef
    80. Min SW, Cho SH, Zhou Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953-66 CrossRef
    81. Prozorovski T, Schulze-Topphoff U, Glumm R et al (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385-94 CrossRef
    82. Gaub P, Tedeschi A, Puttagunta R et al (2010) HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 17:1392-408 CrossRef
    83. Foti SB, Chou A, Moll AD et al (2013) HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 31:434-47 CrossRef
    84. Chatterjee S, Mizar P, Cassel R et al (2013) A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci 33:10698-0712 CrossRef
    85. Huang HY, Liu DD, Chang HF et al (2012) Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells 30:2760-773 CrossRef
    86. Yu IT, Park JY, Kim SH et al (2009) Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56:473-80 CrossRef
    87. Shibasaki M, Mizuno K, Kurokawa K et al (2011) l -type voltage-dependent calcium channels facilitate acetylation of histone H3 through PKCγ phosphorylation in mice with methamphetamine-induced place preference. J Neurochem 118:1056-066 CrossRef
    88. Chen X, Lepier A, Berninger B et al (2012) Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus. PLoS ONE 7:e31547 CrossRef
    89. Cho IS, Jung M, Kwon KS et al (2012) Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription. PLoS ONE 7:e34860. doi:10.1371/journal.pone.0034860 CrossRef
    90. Liu M, Pleasure SJ, Collins AE et al (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A 97:865-70 CrossRef
    91. Fedele V, Roybon L, Nordstr?m U et al (2011) Neurogenesis in the R6/2 mouse model of Huntington’s disease is impaired at the level of NeuroD1. Neuroscience 173:76-1 CrossRef
  • 作者单位:Lucia Leone (1)
    Salvatore Fusco (1)
    Alessia Mastrodonato (1)
    Roberto Piacentini (1)
    Saviana Antonella Barbati (1)
    Salvatore Zaffina (2)
    Giovambattista Pani (3)
    Maria Vittoria Podda (1)
    Claudio Grassi (1)

    1. Institute of Human Physiology, Medical School, Università Cattolica, Largo Francesco Vito 1, 00168, Rome, Italy
    2. Children’s Hospital “Bambino Gesù- Rome, Italy
    3. Institute of General Pathology, Medical School, Università Cattolica, Rome, Italy
  • ISSN:1559-1182
文摘
Throughout life, adult neurogenesis generates new neurons in the dentate gyrus of hippocampus that have a critical role in memory formation. Strategies able to stimulate this endogenous process have raised considerable interest because of their potential use to treat neurological disorders entailing cognitive impairment. We previously reported that mice exposed to extremely low-frequency electromagnetic fields (ELFEFs) showed increased hippocampal neurogenesis. Here, we demonstrate that the ELFEF-dependent enhancement of hippocampal neurogenesis improves spatial learning and memory. To gain insights on the molecular mechanisms underlying ELFEFs-effects, we extended our studies to an in vitro model of neural stem cells (NSCs) isolated from the hippocampi of newborn mice. We found that ELFEFs enhanced proliferation and neuronal differentiation of hippocampal NSCs by regulation of epigenetic mechanisms leading to pro-neuronal gene expression. Upon ELFEF stimulation of NSCs, we observed a significant enhancement of expression of the pro-proliferative gene hairy enhancer of split 1 and the neuronal determination genes NeuroD1 and Neurogenin1. These events were preceded by increased acetylation of H3K9 and binding of the phosphorylated transcription factor cAMP response element-binding protein (CREB) on the regulatory sequence of these genes. Such ELFEF-dependent epigenetic modifications were prevented by the Cav1-channel blocker nifedipine, and were associated with increased occupancy of CREB-binding protein (CBP) to the same loci within the analyzed promoters. Our results unravel the molecular mechanisms underlying the ELFEFs-ability to improve endogenous neurogenesis, pointing to histone acetylation–related chromatin remodeling as a critical determinant. These findings could pave the way to the development of novel therapeutic approaches in regenerative medicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700