Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland
详细信息    查看全文
  • 作者:Andrew N. Gherlenda ; Kristine Y. Crous ; Ben D. Moore ; Anthony M. Haigh…
  • 关键词:Climate change ; Eucalypt ; EucFACE ; Nutrient cycling ; Insects
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:399
  • 期:1-2
  • 页码:29-39
  • 全文大小:855 KB
  • 参考文献:Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270PubMed CrossRef
    Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268CrossRef
    Barton K (2015) MuMIn: multi-model inference. R package version 1.15.1.
    Chapman SK, Whitham TG, Powell M (2006) Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. Oikos 114:566–574CrossRef
    Couture JJ, Lindroth RL (2014) Atmospheric change alters frass quality of forest canopy herbivores. Arthropod-Plant Interections 8:33–47CrossRef
    Couture JJ, Meehan TD, Kruger EL, Lindroth RL (2015) Insect herbivory alters impact of atmospheric change on northern temperate forests. Nat Plants 1:150–160
    Crous KY, Ósvaldsson A, Ellsworth DS (2015) Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391:293–305CrossRef
    Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19:127–137CrossRef
    Davison EM, Tay FCS (1989) Phenology of Eucalyptus marginata on sites infested with Phytophthora cinnamomi. Aust J Bot 37:193–206CrossRef
    Development Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sober J, Host GE, Zak DR, Hendrey GR (2000) Forest atmosphere carbon transfer and storage (FACTS-II) the aspen Free-air CO2 and O3 Enrichment (FACE) project: an overview. US Department of Agriculture, St Paul
    Duval BD, Blankinship JC, Dijkstra P, Hungate BA (2012) CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecol 213:505–521CrossRef
    Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, DeLucia E, Oren R (2012) Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob Chang Biol 18:223–242CrossRef
    Frost CJ, Hunter MD (2004) Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85:3335–3347CrossRef
    Frost CJ, Hunter MD (2007) Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151:42–53PubMed CrossRef
    Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M (2015) Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia 177:607–617PubMed CrossRef
    Gunderson CA, Wullschleger SD (1994) Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynth Res 39:369–388PubMed CrossRef
    Hall AAG, Gherlenda AN, Hasegawa S, Johnson SN, Cook JM, Riegler M (2015) Anatomy of an outbreak: the biology and population dynamics of a Cardiaspina psyllid species in an endangered woodland ecosystem. Agric For Entomol 17:292–301CrossRef
    Hamilton JG, Zangerl AR, Berenbaum MR, Sparks JP, Elich L, Eisenstein A, DeLucia EH (2012) Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol 43:80–85CrossRef
    Heatwole H, Lowman MD, Donovan C, McCoy M (1997) Phenology of leaf-flushing and macroarthropod abundances in canopies of Eucalyptus saplings. Selbyana 18:200–214
    Hillstrom M, Meehan TD, Kelly K, Lindroth RL (2010) Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO2 and O3. Plant Soil 336:75–85CrossRef
    Hollinger DY (1986) Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70:291–297CrossRef
    Hunter MD, Linnen CR, Reynolds BC (2003) Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern appalachians. Pedobiologia 47:231–244CrossRef
    Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes models. Methods Ecol Evol 5:944–946PubMed PubMedCentral CrossRef
    Kagata H, Ohgushi T (2012) Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul Ecol 54:75–82CrossRef
    Katayama N, Nishida T, Zhang ZQ, Ohgushi T (2010) Belowground microbial symbiont enhances plant susceptibility to a spider mite through change in soybean leaf quality. Popul Ecol 52:499–506CrossRef
    Kaukonen M, Ruotsalainen AL, Wäli PR, Männistö MK, Setälä H, Saravesi K, Huusko K, Markkola A (2013) Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94:267–272PubMed CrossRef
    Knepp RG, Hamilton JG, Zangerl AR, Berenbaum MR, DeLucia EH (2007) Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environ Entomol 36:609–617PubMed CrossRef
    Lewin KF, Nagy J, Nettles WR, Cooley DM, Rogers A (2009) Comparison of gas use efficiency and treatment uniformity in a forest ecosystem exposed to elevated [CO2] using pure and prediluted free-air CO2 enrichment technology. Glob Chang Biol 15:388–395CrossRef
    Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ (2002) Insect defoliation and nitrogen cycling in forests. BioScience 52:335–341CrossRef
    Lowman MD (1985) Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Aust J Ecol 10:7–24CrossRef
    Lowman MD, Heatwole H (1992) Spatial and temporal variability in defoliation of Australian eucalypts. Ecology 73:129–142CrossRef
    Madritch MD, Donaldson JR, Lindroth RL (2007) Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol Biochem 39:1192–1201CrossRef
    Meehan TD, Couture JJ, Bennett AE, Lindroth RL (2014) Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. New Phytol 204:397–407PubMed CrossRef
    Mizutani M, Hijii N (2001) Mensuration of frass drop for evaluating arthropod biomass in canopies: a comparison among Cryptomeria japonica, Larix kaempferi, and deciduous broad-leaved trees. Forest Ecol Manag 154:327–335CrossRef
    Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRef
    Murray TJ, Ellsworth DS, Tissue DT, Riegler M (2013a) Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Glob Chang Biol 19:1407–1416PubMed CrossRef
    Murray TJ, Tissue DT, Ellsworth DS, Riegler M (2013b) Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia 171:1025–1035PubMed CrossRef
    Myers BA, Williams RJ, Fordyce I, Duff GA, Eamus D (1998) Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia? Aust J Ecol 23:329–339CrossRef
    Nahrung HF, Duffy MP, Lawson SA, Clarke AR (2008) Natural enemies of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) in south-eastern Queensland eucalypt plantations. Aust J Ecol 47:188–194
    Nielsen UN, Prior S, Delroy B, Walker JKM, Ellsworth DS, Powell JR (2015) Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391:321–331CrossRef
    Ohmart CP (1984) Is insect defoliation in eucalypt forests greater than that in other temperate forests? Aust J Ecol 9:413–418CrossRef
    Ohmart CP, Stewart LG, Thomas JR (1983) Leaf consumption by insects in three Eucalyptus forest types in southeastern Australia and their role in short-term nutrient cycling. Oecologia 59:322–330CrossRef
    Pinheiro J, Bates D, DebRoy S, Sarkar D (2015) nlme: linear and nonlinear mixed effects models. R Package Version 3.1-122.
    Pook EW (1984) Canopy dynamics of Eucalyptus maculata Hook. I. Distribution and dynamics of leaf populations. Aust J Bot 32:387–403CrossRef
    Pook EW, Gill AM, Moore PHR (1997) Long-term variation of litter fall, canopy leaf area and flowering in a Eucalyptus maculata forest on the south coast of New South Wales. Aust J Bot 45:737–755CrossRef
    Reynolds BC, Hunter MD, Crossley DA Jr (2000) Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21:74–78
    Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336PubMed CrossRef
    Ryan GD, Rasmussen S, Newman JA (2010) Global atmospheric change and trophic interactions: are there any general responses? In: Baluska F, Ninkovic V (eds) Plant Communication from an Ecological Perspective. Springer, Berlin
    Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338CrossRef
    Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol 14:33–47CrossRef
    Schowalter TD (2000) Insect ecology: an ecosystem approach. Academic, San Diego
    Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SK, Whitham TG (2005) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133–145CrossRef
    Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78PubMed CrossRef
    Stadler B, Solinger S, Michalzik B (2001) Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests. Oecologia 126:104–113CrossRef
    Steinbauer MJ, Clarke AR, Madden JL (1998) Oviposition preference of a Eucalyptus herbivore and the importance of leaf age on interspecific host choice. Ecol Entomol 23:201–206CrossRef
    Steinbauer MJ, Burns AE, Hall A, Riegler M, Taylor GS (2014) Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence? Oecologia 176:1061–1074PubMed PubMedCentral CrossRef
    Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13:1823–1842CrossRef
    Townsend PA, Eshleman KN, Welcker C (2004) Remote sensing of gypsy moth defoliation to assess variations in stream nitrogen concentrations. Ecol Appl 14:504–516CrossRef
    Tozer M (2003) The native vegetation of the Cumberland plain, western Sydney: systematic classification and field identification of communities. Cunninghamia 8:1–75
    White TCR (2015) Senescence-feeders: a new trophic sub-guild of insect herbivores. J Appl Entomol 139:11–22CrossRef
  • 作者单位:Andrew N. Gherlenda (1)
    Kristine Y. Crous (1)
    Ben D. Moore (1)
    Anthony M. Haigh (2)
    Scott N. Johnson (1)
    Markus Riegler (1)

    1. Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
    2. School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims Herbivorous insects are important nutrient cyclers that produce nutrient-rich frass. The impact of elevated atmospheric [CO2] on insect-mediated nutrient cycling, and its potential interaction with precipitation and temperature, is poorly understood and rarely quantified. We tested these climatic effects on frass deposition in a nutrient-limited mature woodland.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700