Elevated CO2 increased phosphorous loss from decomposing litter and soil organic matter at two FACE experiments with trees
详细信息    查看全文
  • 作者:Marcel R. Hoosbeek
  • 关键词:Soil phosphorous ; Elevated CO2 ; FACE experiment ; Litter and soil stoichiometry ; Secondary forest growth
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:89-97
  • 全文大小:469 KB
  • 参考文献:Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRef
    Buurman P, Van Lagen B, Velthorst EJ (1996) Manual for soil and water analyses. Backhuys Publishers, Leiden
    Calfapietra C, De Angelis P, Gielen B, Lukac M, Moscatelli MC, Avino G, Lagomarsino A, Polle A, Ceulemans R, Scarascia-Mugnozza G, Hoosbeek MR, Cotrufo MF (2007) Increased nitrogen-use efficiency of a short-rotation polar plantation in elevated CO2 concentration. Tree Physiol 27:1153–1163CrossRef
    Cotrufo MF, De Angelis P, Polle A (2005) Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Glob Change Biol 11:971–982CrossRef
    Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142CrossRef
    Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. N Phytol 186(3):593–608CrossRef
    Finzi AC, Norby RJ, Calfapietra C, Gallet Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104(35):14014–14019CrossRef
    Godbold D, Hoosbeek M, Lukac M, Cotrufo MF, Janssens I, Ceulemans R, Polle A, Velthorst E, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281(1–2):15–24CrossRef
    Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296CrossRef
    Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1(1):92–120CrossRef
    Hoosbeek MR, Scarascia-Mugnozza GE (2009) Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems 12:220–239CrossRef
    Hoosbeek MR, Lukac M, Van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, De Angelis P, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles 18:GB1040. doi:10.​1029/​2003GB002127 CrossRef
    Hoosbeek MR, Lukac M, Velthorst EJ, Smith AR, Godbold DL (2011) Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeosciences 8:353–364CrossRef
    Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35(1):313–347CrossRef
    Hungate BA, Dijkstra P, Wu Z, Duval BD, Day FP, Johnson DW, Megonigal JP, Brown ALP, Garland JL (2013) Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. N Phytol 200(3):753–766CrossRef
    Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE Jr (2004) Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69(3):379–403CrossRef
    Khan FN, Lukac M, Turner G, Godbold DL (2008) Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE). Soil Biol Biochem 40(7):1716–1723CrossRef
    Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33(6):1441–1450CrossRef
    Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S (2008) Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–147CrossRef
    LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379CrossRef
    Lewis JD, Ward JK, Tissue DT (2010) Phosphorus supply drives nonlinear responses of cottonwood (Populus deltoides) to increases in CO2 concentration from glacial to future concentrations. N Phytol 187(2):438–448CrossRef
    Liberloo M, Lukac M, Calfapietra C, Hoosbeek MR, Gielen B, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R (2009) Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. N Phytol 182(2):331–346CrossRef
    Liberloo M, Luyssaert S, Bellassen V, Njakou Djomo S, Lukac M, Calfapietra C, Janssens IA, Hoosbeek MR, Viovy N, Churkina G, Scarascia-Mugnozza G, Ceulemans R (2010) Bio-energy retains its mitigation potential under elevated CO2. PLoS One 5(7):e11648CrossRef
    Liu J, Huang W, Zhou G, Zhang D, Liu S, Li Y (2013) Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Glob Change Biol 19(1):208–216CrossRef
    Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Change Biol 9:838–848CrossRef
    Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N Phytol 193(3):696–704CrossRef
    Miglietta F, Peressotti A, Vaccari FP, Zaldei A, De Angelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. N Phytol 150:465–476CrossRef
    Naples B, Fisk M (2010) Belowground insights into nutrient limitation in northern hardwood forests. Biogeochemistry 97(2):109–121CrossRef
    Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon Junior B-H, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements. Plant Ecol Divers 7(1–2):173–187CrossRef
    Nasto MK, Alvarez-Clare S, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC (2014) Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecol Lett 17(10):1282–1289CrossRef
    Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74(3):491–511CrossRef
    Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza G, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–18056CrossRef
    Novozamsky I, Houba VJG, Van Eck R, Van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14(3):239–248CrossRef
    Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18(1):3–6CrossRef
    Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7(5):1515–1541CrossRef
    Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8(6):1415–1440CrossRef
    Scarascia-Mugnozza GE, Calfapietra C, Ceulemans R, Gielen B, Cotrufo MF, De Angelis P, Godbold DL, Hoosbeek MR, Kull O, Lukac M, Marek M, Miglietta F, Polle A, Raines C, Sabatti M, Anselmi N, Taylor G (2006) Responses to elevated [CO2] of a short rotation, multispecies poplar plantation: the POPFACE/EUROFACE experiment. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2. Ecological studies. Springer, Berlin, pp 173–195
    Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43(1):313–343CrossRef
    Smith AR (2010) The effect of atmospheric CO2 enrichment on biogeochemical cycling of a temperate forest ecosystem. School of Environment, Natural Resources and Geography, Bangor University, Bangor
    Smith AR, Lukac M, Bambrick M, Miglietta F, Godbold DL (2013) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Glob Change Biol 19(1):217–228CrossRef
    Soil Survey Staff (1992) Keys to soil taxonomy, sixth edition, 1994. Soil Conservation Service, USDA, Washington, DC
    Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23(8):424–431CrossRef
    van den Driessche R (1974) Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev 40(3):347–394CrossRef
    Van Groenigen KJ, Six J, Hungate BA, De Graaff MA, Van Breemen N, Van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103(17):6571–6574CrossRef
    Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20(1):5–15CrossRef
    Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36(24):L24403CrossRef
  • 作者单位:Marcel R. Hoosbeek (1)

    1. Department of Soil Quality, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
Sustained increased productivity of trees growing in elevated CO2 depends in part on their stoichiometric flexibility, i.e., increasing their nutrient use efficiency, or on increased nutrient uptake from the soil. Phosphorus (P) may be a nutrient as limiting as nitrogen (N) in terrestrial ecosystems and may play a key-process in global terrestrial C storage. For this study archived litter and soil samples of two free air CO2 enrichment (FACE) experiments were analyzed for C, N and P. Populus euramericana, nigra and alba and Betula pendula, Alnus glutinosa and Fagus sylvatica were grown in ambient and elevated CO2 at respectively the Euro- and BangorFACE experiments. At EuroFACE, aboveground litter accumulated in L, F and H layers, while at BangorFACE almost all aboveground litter was incorporated into the mineral soil due to bioturbation. At EuroFACE, more P was lost from the F and H litter layers due to trees growing in elevated CO2, while at BangorFACE more P was lost from the mineral soil. Results of this study imply that trees growing in elevated CO2 were P limited at both experiments. Therefore, with increasing atmospheric CO2, P may play a more pronounced role than previous thought in regulating secondary forest growth. Moreover, increased atmospheric CO2 and ample N may allow a larger pool of P to become available for uptake due to, for instance, increased phosphatase activity resulting in increased organic matter turnover and biogenic weathering. Therefore, it may be postulated that under non-N-limited conditions, e.g., during regrowth, under high N deposition or in systems with high N2-fixation, increased P availability and uptake may allow P-limited forests to sustain increased growth under increasing atmospheric CO2. Keywords Soil phosphorous Elevated CO2 FACE experiment Litter and soil stoichiometry Secondary forest growth

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700