Aliphatic organochlorine degradation in subsurface environments
详细信息    查看全文
  • 作者:Joanna Koenig (1)
    Matthew Lee (1)
    Mike Manefield (1)

    1. School of Biotechnology and Biomolecular Sciences
    ; University of New South Wales ; Sydney ; NSW ; 2052 ; Australia
  • 关键词:Chlorinated aliphatic hydrocarbons ; Organochlorine respiring bacteria ; Zero valent iron ; Dechlorination ; Bioremediation ; Subsurface biogeochemistry
  • 刊名:Reviews in Environmental Science and Biotechnology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 页码:49-71
  • 全文大小:821 KB
  • 参考文献:1. Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environ Sci Technol 34:1959鈥?965
    2. AFCEE (2008) Workshop on in situ biogeochemical transformation of chlorinated solvents. U. D. o. D. A. F. C. f. E. E. a. ESTCP
    3. Ammonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606鈥?613
    4. Arnold WA, Ball WP, Roberts AL (1999) Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. J Contam Hydrol 40(2):183鈥?00
    5. Assaf-Anid N, Lin KY (2002) Carbon tetrachloride reduction by Fe2+, S2鈭?/sup>, and FeS with vitamin B12 as organic amendment. J Environ Eng Asce 128(1):94鈥?9
    6. Auffan M, Achouak W, Rose J, Roncato MA, Chan茅ac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward / Escherichia coli. Environ Sci Technol 42(17):6730鈥?735
    7. Aulenta F, Majone M, Tandoi V (2006) Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J Chem Technol Biotechnol 81(9):1463鈥?474
    8. Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41:27鈥?8
    9. Aulenta F, Beccari M, Majone M, Papini MP, Tandoi V (2008) Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochem 43:161鈥?68
    10. Azizian MF, Marshall IPG, Behrens S, Spormann AM, Semprini L (2010) Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. J Contam Hydrol 113:77鈥?2
    11. Bagley DM, Lalonde M, Kaseros V, Stasiuk KE, Sleep BE (2000) Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Res 34(1):171鈥?78
    12. Ballapragada BS, Stensel HD, Puhakka JA, Ferguson JF (1997) Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ Sci Technol 31:1728鈥?734
    13. Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010a) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554鈥?62
    14. Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IP (2010b) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1鈥?):73鈥?0
    15. Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environ Sci Technol 28(11):1942鈥?949
    16. Belay N, Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53(7):1604鈥?610
    17. Berggren DRV, Marshall IPG, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47(4):1879鈥?886
    18. Bouwer EJ, McCarty PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45(4):1286鈥?294
    19. Butler JH (2000) Atmospheric chemistry: better budgets for methyl halides? Nature 403(6767):260鈥?61
    20. Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021鈥?027
    21. Butler EC, Hayes KF (2000) Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol 34(3):422鈥?29
    22. Castro C, Helvenston M, Belser N (1994) Biodehalogenation, reductive dehalogenation by Methanobacterium Thermoautotrophicum. Comparison with nickel (I) octaethylisobacteriochlorin anion. An F-430 model. Environ Toxicol Chem 13(3):429鈥?33
    23. Chang H-L, Alvarez-Cohen L (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl Environ Microbiol 62(9):3371鈥?377
    24. Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995鈥?001
    25. Choe S, Lee SH, Chang YY, Hwang KY, Khim J (2001) Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 42(4):367鈥?72
    26. Choi K, Lee W (2009) Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion. J Hazard Mater 172(2鈥?):623鈥?30
    27. Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717鈥?726
    28. Cox MJ, Sch盲fer H, Nightingale PD, McDonald IR, Murrell JC (2012) Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters. FEMS Microbiol Lett 334(2):111鈥?18
    29. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211鈥?12:112鈥?25
    30. Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1鈥?):42鈥?1
    31. Curtis GP, Reinhard M (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthraquinone disulfonate and humic acid. Environ Sci Technol 28:2393鈥?401
    32. Danielsen KM, Hayes KF (2004) pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ Sci Technol 38:4745鈥?752
    33. Danielsen KM, Gland JL, Hayes KF (2005) Influence of amine buffers on carbon tetrachloride reductive dechlorination by the iron oxide magnetite. Environ Sci Technol 39(3):756鈥?63
    34. Davis A, Fennemore GG, Peck C, Walker CR, McIlwraith J, Thomas S (2003) Degradation of carbon tetrachloride in a reducing groundwater environment: implications for natural attenuation. Appl Geochem 18(4):503鈥?25
    35. De Bruin WP, Kotterman M, Posthumus MA, Schraa G, Zehnder A (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58(6):1996鈥?000
    36. De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003a) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69(9):5643鈥?647
    37. De Wildeman S, Neumann A, Diekert G, Verstraete W (2003b) Growth-substrate dependent dechlorination of 1, 2-dichloroethane by a homoacetogenic bacterium. Biodegradation 14(4):241鈥?47
    38. Devlin JF, Muller D (1999) Field and laboratory studies of carbon tetrachloride transformation in a sandy aquifer under sulfate reducing conditions. Environ Sci Technol 33(7):1021鈥?027
    39. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) / Desulfomonile tiedjei gen.nov. and sp.nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23鈥?0
    40. Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43(20):5243鈥?251
    41. Ding C, Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1, 1, 1-trichloroethane and chloroform. Environ Microbiol. doi:10.1111/1462-2920.12387
    42. Distefano TD, Gossett JM, Zinder S (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol 58(11):3622鈥?629
    43. Doherty RE (2000a) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: Part 1鈥攈istorical background; carbon tetrachloride and tetrachloroethylene. J Environ Forensics 1:69鈥?1
    44. Doherty RE (2000b) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 1鈥攈istorical background; carbon tetrachloride and tetrachloroethylene. Environmental forensics 1(2):69鈥?1
    45. Drzyzga O, Gottschal JC (2002) Tetrachloroethene dehalorespiration and growth of / Desulfitobacterium frappieri TCE1 in strict dependence on the activity of / Desulfovibrio fructosivorans. Appl Environ Microbiol 68(2):642鈥?49
    46. Drzyzga O, El Mamouni R, Agathos SN, Gottschal JC (2002) Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions. Environ Sci Technol 36(12):2630鈥?635
    47. Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41:2303鈥?310
    48. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, / cis-dichloroethene and vinyl chloride. Water Res 36:4193鈥?202
    49. Egli C, Scholtz R, Cook AM, Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1, 2-dichloroethane to degradable products by pure cultures of / Desulfobacterium sp. and / Methanobacterium sp. FEMS Microbiol Lett 43(3):257鈥?61
    50. Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by / Acetobacterium woodii. Appl Environ Microbiol 54(11):2819鈥?824
    51. Egli C, Stromeyer S, Cook AM, Leisinger T (1990) Transformation of tetra-and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol Lett 68(1):207鈥?12
    52. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922鈥?926
    53. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34(11):2254鈥?260
    54. Elsner M, Haderlein SB, Kellerhals T, Luzi S, Zwank L, Angst W, Schwarzenbach RP (2004) Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Environ Sci Technol 38:2058鈥?066
    55. Erbs M, Hansen HCB, Olsen CE (1999) Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ Sci Technol 33(2):307鈥?11
    56. Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918鈥?26
    57. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144鈥?151
    58. Freedman DL, Gossett J (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol 57(10):2847鈥?857
    59. Freedman DL, Smith CR, Noguera DR (1997) Dichloromethane biodegradation under nitrate-reducing conditions. Water Environ Res 69(1):115鈥?22
    60. Fultz ML, Durst RA (1982) Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal Chim Acta 140(1):1鈥?8
    61. Futagami T, Yamaguchi T, Nakayama S-I, Goto M, Furukawa K (2006) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72(9):5998鈥?003
    62. G盲lli R, Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conserv Recycl 8(1):91鈥?00
    63. Galli R, Stucki G, Leisinger T (1982) Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experientia 38:1378
    64. Gerlach R, Cunningham AB, Caccavo F (2000) Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environ Sci Technol 34(12):2461鈥?464
    65. Gerritse J, Renard V, Gomes TP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165(2):132鈥?40
    66. Gillham RW, O鈥橦annesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958鈥?67
    67. Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang WX (2003) Nanotechnology takes root. Civ Eng 73(5):64鈥?9
    68. Gribble GW (1992) Naturally occurring organohalogen compounds鈥攁 survey. J Nat Prod 55(10):1353鈥?395
    69. Gribble G (1994) The abundant natural sources and uses of chlorinated chemicals. Am J Public Health 84(7):1183
    70. Grostern A, Edwards EA (2006a) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849鈥?856
    71. Grostern A, Edwards EA (2006b) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72(1):428鈥?36
    72. Grostern A, Edwards EA (2009) Characterization of a / Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75(9):2684鈥?693
    73. Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053鈥?060
    74. Guerrero-Barajas C, Field JA (2005) Riboflavin-and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89(5):539鈥?50
    75. Gupta M, Gupta A, Suidan MT, Sayles GD (1996) Biotransformation rates of chloroform under anaerobic conditions鈥擨I. Sulfate reduction. Water Res 30(6):1387鈥?394
    76. Hanoch R, Shao H, Butler EC (2006) Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite. Chemosphere 63(2):323鈥?34
    77. Harkness MR, Bracco AA, Brennan MJ, Deweerd KA, Spivack JL (1999) Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100鈥?109
    78. Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by / Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65(10):4537鈥?542
    79. Hashsham SA, Scholze R, Feedman DL (1995) Cobalamin-enhanced anaerobic biotransformation of carbon tetrachloride. Environ Sci Technol 29(11):2856鈥?863
    80. He JZ, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, L枚ffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36(18):3945鈥?952
    81. He J, Ritalahti KM, Yang K-L, Koenigsberg SS, L枚ffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424(6944):62鈥?5
    82. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, L枚ffler FE (2005) Isolation and characterization of / Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7(9):1442鈥?450
    83. He J, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of / Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847鈥?853
    84. He F, Zhao D, Paul C (2011) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360鈥?370
    85. Heimann AC, Friis AK, Jakobsen R (2005) Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Res 39:3579鈥?586
    86. Hoelen TP, Reinhard M (2004) Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation 15:395鈥?03
    87. Holliger C, Schraa G, Stams AJ, Zehnder AJ (1990) Reductive dechlorination of 1, 2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Biodegradation 1(4):253鈥?61
    88. Holliger C, Schraa G, Stams A, Zehnder A (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991鈥?997
    89. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998a) / Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313鈥?21
    90. Holliger C, Wohlfarth G, Diekert G (1998b) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22(5):383鈥?98
    91. Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA (2012) Comparative metagenomics of three / Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genom 13(1):327
    92. Isalou M, Sleep BE, Liss SN (1998) Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environ Sci Technol 32:3579鈥?585
    93. Jayachandran G, G枚risch H, Adrian L (2004) Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch Microbiol 182(6):498鈥?04
    94. Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30(8):2634鈥?640
    95. Jones EJP, Voytek MA, Lorah MM, Kirshtein JD (2006) Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediat J 10(4):153鈥?68
    96. Justicia-Leon SD, Ritalahti KM, Mack EE, L枚ffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288鈥?291
    97. Kaseros VB, Sleep BE, Bagley DM (2000) Column studies of biodegradation of mixtures of tetrachloroethene and carbon tetrachloride. Water Res 34(17):4161鈥?168
    98. Keene W, Khalil MAK, Erickson D, McCulloch A, Graedel TE, Lobert JM, Aucott ML, Gong SL, Harper DB, Kleiman G (1999) Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive Chlorine Emissions Inventory. J Geophys Res Atmos (1984鈥?012) 104(D7):8429鈥?440
    99. Kenneke JF, Weber EJ (2003) Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Environ Sci Technol 37(4):713鈥?20
    100. Kim S, Picardal FW (1999) Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides. Environ Toxicol Chem 18(10):2142鈥?150
    101. Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474鈥?480
    102. Kle膷ka G, Carpenter C, Gonsior S (1998) Biological transformations of 1, 2-dichloroethane in subsurface soils and groundwater. J Contam Hydrol 34(1):139鈥?54
    103. Koenig JC, Lee MJ, Manefield M (2012) Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria. J Hazard Mater 219:169鈥?75
    104. Kohler-Staub D, Leisinger T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol 162(2):676鈥?81
    105. Koons BW, Baeseman JL, Novak PJ (2001) Investigation of cell exudates active in carbon tetrachloride and chloroform degradation. Biotechnol Bioeng 74(1):12鈥?7
    106. Kriegman-King MR, Reinhard M (1992) Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ Sci Technol 26(11):2198鈥?206
    107. Kriegman-King MR, Reinhard M (1994) Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28(4):692鈥?00
    108. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47(4):1262鈥?263
    109. Lampron K, Chiu P, Cha D (2001) Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res 35(13):3077鈥?084
    110. Lee W, Batchelor B (2002a) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147鈥?154
    111. Lee W, Batchelor B (2002b) Abiotic, reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust. Environ Sci Technol 36(24):5348鈥?354
    112. Lee WJ, Batchelor B (2004) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates. Chemosphere 56(10):999鈥?009
    113. Lee C, Jee YK, Won IL, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on / Escherichia coli. Environ Sci Technol 42(13):4927鈥?933
    114. Lee M, Cord-Ruwisch R, Manefield M (2010) A process for the purification of organochlorine contaminated activated carbon: sequential solvent purging and reductive dechlorination. Water Res 44(5):1580鈥?590
    115. Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883鈥?94
    116. Lendvay JM, Loffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37(7):1422鈥?431
    117. Lewis TA, Morra MJ, Brown PD (1996) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium (III) reducing agents. Environ Sci Technol 30(1):292鈥?00
    118. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to / E. coli. Environ Sci Technol 44(9):3462鈥?467
    119. Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng Asce 125:1042鈥?047
    120. Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng Asce 131:4鈥?0
    121. L枚ffler FE, Sanford RA, Ritalahti KM (2005) Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Environ Microbiol 397:77鈥?11
    122. Lorah MM, Olsen LD (1999) Degradation of 1, 1, 2, 2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence. Environ Sci Technol 33(2):227鈥?34
    123. Magli A, Rainey FA, Leisinger T (1995) Acetogenesis from dichloromethane by a two-component mixed culture comprising a novel bacterium. Appl Environ Microbiol 61(8):2943鈥?949
    124. M盲gli A, Wendt M, Leisinger T (1996) Isolation and characterization of / Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch Microbiol 166(2):101鈥?08
    125. M盲gli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe / Dehalobacterium formicoaceticum. Appl Environ Microbiol 64(2):646鈥?50
    126. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64(4):1270鈥?275
    127. Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase fromDehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66(12):5141鈥?147
    128. Maithreepala RA, Doong RA (2008) Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions. Chemosphere 70(8):1405鈥?413
    129. Maithreepala RA, Doong RA (2009) Transformation of carbon tetrachloride by biogenic iron species in the presence of / Geobacter sulfurreducens and electron shuttles. J Hazard Mater 164(1):337鈥?44
    130. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek S, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106鈥?116
    131. Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-dichloroethene-respiring / Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78(15):5280鈥?287
    132. Maphosa F, Van Passel MWJ, De Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of / Dehalobacter sp. E1 growing in co-culture with / Sedimentibacter sp. Environ Microbiol Rep 4(6):604鈥?16
    133. Maym贸-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61(11):3928鈥?933
    134. Maym贸-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568鈥?571
    135. Maym贸-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by 鈥?em class="a-plus-plus">Dehalococcoides ethenogenes鈥?195. Appl Environ Microbiol 65(7):3108鈥?113
    136. Maym贸-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of / cis-1,2-dichloroethene and vinyl chloride by 鈥?em class="a-plus-plus">Dehalococcoides ethenogenes鈥? Environ Sci Technol 35:516鈥?21
    137. Mazur CS, Jones WJ (2001) Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ Sci Technol 35:4783鈥?788
    138. McCormick ML, Adriaens P (2004) Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:1045鈥?053
    139. McCormick ML, Bouwer EJ, Adriaens P (2002) Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environ Sci Technol 36(3):403鈥?10
    140. McKinlay JB, Zeikus JG (2004) Extracellular iron reduction is mediated in part by neutral red and hydrogenase in / Escherichia coli. Appl Environ Microbiol 70(6):3467鈥?474
    141. Melendez C, Roman M, Smith G (1993) Biodegradation of Dichloromethane under denitrifying conditions by a waste water microbial community and by pure cultures of Hyphomicrobium strain X. 93rd general meeting, American Society for Microbiology, Session
    142. Men Y, Feil H, Verberkmoes NC, Shah MB, Johnson DR, Lee PKH, West KA, Zinder SH, Andersen GL, Alvarez-Cohen L (2012) Sustainable syntrophic growth of / Dehalococcoides ethenogenes strain 195 with / Desulfovibrio vulgaris Hildenborough and / Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J 6(2):410鈥?21
    143. Me脽mer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160(5):383鈥?87
    144. Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168(6):513鈥?19
    145. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59(11):2692鈥?697
    146. Muchitsch N, Van Nooten T, Bastiaens L, Kjeldsen P (2011) Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs). J Contam Hydrol 126(3鈥?):258鈥?70
    147. M眉ller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880鈥?888
    148. Nelson DK, Hozalski RM, Clapp LW, Semmens MJ, Novak PJ (2002) Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Bioremediat J 6:225鈥?36
    149. Nightingale P, Malin G, Liss P (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40:680
    150. Nobre R, Nobre MM (2004) Natural attenuation of chlorinated organics in a shallow sand aquifer. J Hazard Mater 110(1):129鈥?37
    151. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292鈥?297
    152. Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36:1734鈥?741
    153. Penny C, Vuilleumier S, Bringel F (2010) Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol 74(2):257鈥?75
    154. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2007) Stabilization of aqueous zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795鈥?14
    155. Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ Sci Technol 43(13):5079鈥?085
    156. Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86(6):1659鈥?670
    157. Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O鈥橦ara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309鈥?318
    158. Rhew RC, Miller BR, Weiss RF (2000) Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature 403(6767):292鈥?95
    159. Rosenthal H, Adrian L, Steiof M (2004) Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two / Dehalococcoides strains. Chemosphere 55(5):661鈥?69
    160. Rosner BM, McCarty PL, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63(11):4139鈥?144
    161. Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1, 1, 2, 2-tetrachloroethane to ethene. Biotechnol Bioeng 100(2):240鈥?49
    162. Sakulchaicharoen N, O鈥機arroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3鈥?):117鈥?27
    163. Scherer MM, Richter S, Valentine RL, Alvarez PJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Microbiol 26(4):221鈥?64
    164. Scheutz C, Durant ND, Hansen MH, Bjerg PL (2011) Natural and enhanced anaerobic degradation of 1, 1, 1-trichloroethane and its degradation products in the subsurface鈥攁 critical review. Water Res 45(9):2701鈥?723
    165. Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15(2):85鈥?4
    166. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of / Dehalococcoides mccartyi strains. Philos Trans R Soc B Biol Sci 368(1616):20120321
    167. Scholz-Muramatsu H, Neumann A, Me脽mer M, Moore E, Diekert G (1995) Isolation and characterization of / Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163(1):48鈥?6
    168. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187鈥?193
    169. Schumacher W, Holliger C (1996) The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in鈥? / Dehalobacter restrictus鈥? J Bacteriol 178(8):2328鈥?333
    170. Shan H, Kurtz HD Jr, Freedman DL (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44:1317鈥?328
    171. Shao H, Butler EC (2009) Influence of soil minerals on the rates and products of abiotic transformation of carbon tetrachloride in anaerobic soils and sediments. Environ Sci Technol 43:1896鈥?901
    172. Sleep BE, Seepersad D, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron CA, Lollar BS, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623鈥?633
    173. Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30:2850鈥?858
    174. Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237鈥?245
    175. Stromeyer SA, Winkelbauer W, Kohler H, Cook AM, Leisinger T (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2(2):129鈥?37
    176. Su C, Puls RW, Krug TA, Watling MT, O鈥橦ara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071鈥?084
    177. Sun B, Griffin BM, Ayala-del-R铆o HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1, 1, 1-trichloroethane. Science 298(5595):1023鈥?025
    178. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65(7):1474鈥?481
    179. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184(13):3419鈥?425
    180. Tandoi V, DiStefano TD, Bowser PA, Gossett JM, Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ Sci Technol 28(5):973鈥?79
    181. Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philos Trans R Soc B Biol Sci 368(1616):20120318
    182. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613鈥?632
    183. Tratnyek PG, Johnson RL (2005) Nanotechnologies for environmental cleanup. Nano Today 1(2):44鈥?8
    184. Tratnyek PG, Johnson TL, Scherer MM, Eykholt GR (1997) Remediating ground water with zero-valent metals: chemical considerations in barrier design. Ground Water Monit Rem 17(4):108鈥?14
    185. Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27(3):256鈥?77
    186. Van Nooten T, Lieben F, Dries J, Pirard E, Springael D, Bastiaens L (2007) Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions. Environ Sci Technol 41(16):5724鈥?730
    187. Van Nooten T, Springael D, Bastiaens L (2008) Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ Sci Technol 42(5):1680鈥?686
    188. Vannelli T, Studer A, Kertesz M, Leisinger T (1998) Chloromethane metabolism byMethylobacterium sp. Strain CM4. Appl Environ Microbiol 64(5):1933鈥?936
    189. Vogel TM, McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49(5):1080鈥?083
    190. Vogel TM, Criddle CS, McCarty PL (1987) ES&T critical reviews: transformations of halogenated aliphatic compounds. Environ Sci Technol 21(8):722鈥?36
    191. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154鈥?156
    192. Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633鈥?41
    193. Weathers LJ, Parkin GF (2000) Toxicity of chloroform biotransformation to methanogenic bacteria. Environ Sci Technol 34(13):2764鈥?767
    194. Wei YT, Wu SC, Chou CM, Che CH, Tsai SM, Lien HL (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44(1):131鈥?40
    195. Wild AP, Winkelbauer W, Leisinger T (1995) Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1, 2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6(4):309鈥?18
    196. Workman DJ, Woods SL, Gorby YA, Fredrickson JK, Truex MJ (1997) Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environ Sci Technol 31(8):2292鈥?297
    197. Xiu ZM, Gregory KB, Lowry GV, Alvarez PJJ (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in / Dehalococcoides spp. Environ Sci Technol 44(19):7647鈥?651
    198. Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJJ (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141鈥?146
    199. Yan J, Ritalahti KM, Wagner DD, L枚ffler FE (2012) Unexpected specificity of interspecies cobamide transfer from / Geobacter spp. to organohalide-respiring / Dehalococcoides mccartyi strains. Appl Environ Microbiol 78(18):6630鈥?636
    200. Yan J, Im J, Yang Y, L枚ffler FE (2013) Guided cobalamin biosynthesis supports / Dehalococcoides mccartyi reductive dechlorination activity. Philos Trans R Soc Lond B Biol Sci 368(1616):20120320
    201. Yang YY, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591鈥?597
    202. Yee LH, Aagaard V, Johnstone A, Lee M, Kjelleberg SJ, Manefield M (2010) Development of a treatment solution for reductive dechlorination of hexachloro-1, 3-butadiene in vadose zone soil. Biodegradation 21(6):947鈥?56
    203. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME (2012) Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in / Dehalococcoides mccartyi. Appl Environ Microbiol 78(21):7745鈥?752
    204. Zemb O, Lee M, Low A, Manefield M (2010) Reactive iron barriers: a niche enabling microbial dehalorespiration of 1, 2-dichloroethane. Appl Microbiol Biotechnol 88(1):319鈥?25
    205. Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387鈥?95
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environmental Biotechnology
    Microbiology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1572-9826
文摘
Organochlorines are simultaneously of great value to society and a great threat to human health and the living environment. Their recalcitrance, toxicity and carcinogenicity have driven research activity towards an understanding of degradation mechanisms in the environment and the development of technologies enhancing degradation. This review focuses primarily on the role of organochlorine respiring bacteria in the dechlorination of chlorinated ethenes, ethanes and methanes in subsurface environments. Attention is given to the biogeochemical setting of organochlorine reduction with the influences of co-habiting microbial communities and iron and sulphur cycling considered. This is done in relation to existing technologies to enhance subsurface reductive dechlorination including reactive iron barriers and nano-scale zero valent iron. Overall, a remarkable body of knowledge has been generated in this sphere over the past two decades, giving hope that the global community can continue making use of organochlorines without further impacting on human and environmental health.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700