Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica
详细信息    查看全文
  • 作者:Sean T. S. Wei (1)
    Miguel-Angel Fernandez-Martinez (2)
    Yuki Chan (1)
    Joy D. Van Nostrand (3)
    Asuncion de los Rios-Murillo (2)
    Jill M. Y. Chiu (4)
    Annapoorna Maitrayee Ganeshram (1)
    S. Craig Cary (5)
    Jizhong Zhou (3) (6) (7)
    Stephen B. Pointing (1) (5)

    1. Institute for Applied Ecology New Zealand
    ; School of Applied Sciences ; Auckland University of Technology ; Private Bag 92006 ; Auckland ; 1142 ; New Zealand
    2. Centro de Ciencias Medioambientales
    ; C/Serrano 115 Duplicado ; 28006 ; Madrid ; Spain
    3. Department of Microbiology and Plant Biology
    ; Institute for Environmental Genomics ; University of Oklahoma ; Norman ; OK ; 73019 ; USA
    4. Department of Biology
    ; Hong Kong Baptist University ; Kowloon Tong ; Hong Kong ; China
    5. International Centre for Terrestrial Antarctic Research
    ; University of Waikato ; Private Bag 3105 ; Hamilton ; 3240 ; New Zealand
    6. Earth Sciences Division
    ; Lawrence Berkeley National Laboratory ; Berkeley ; CA ; 94720 ; USA
    7. State Key Joint Laboratory of Environment Simulation and Pollution Control
    ; School of Environment ; Tsinghua University ; Beijing ; 100084 ; China
  • 关键词:Antarctica ; Chasmoendolith ; Dry Valleys ; Geochip ; Stress response
  • 刊名:Polar Biology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:38
  • 期:4
  • 页码:433-443
  • 全文大小:1,599 KB
  • 参考文献:1. Arenz, BE (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38: pp. 3057-3064 CrossRef
    2. Bahl, J (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2: pp. 163 CrossRef
    3. Bottos, E (2013) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67: pp. 120-128 CrossRef
    4. Caruso, T (2011) Stochastic and deterministic processes interact to determine global biogeography of arid soil bacteria. ISME J 5: pp. 1406-1413 CrossRef
    5. Cary, SC, McDonald, IR, Barrett, JE, Cowan, DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8: pp. 129-138 CrossRef
    6. Chan, Y (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14: pp. 2272-2282 CrossRef
    7. Chan, Y (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci USA 110: pp. 8990-8995 CrossRef
    8. Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18: pp. 117-143 CrossRef
    9. Cowan, DA (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic dry valley. Polar Biol 34: pp. 307-311 CrossRef
    10. Torre, J, Goebel, B, Friedmann, EI, Pace, NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69: pp. 3858-3867 CrossRef
    11. los Rios, A, Wierzchos, J, Sancho, LG, Ascaso, C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50: pp. 143-152 CrossRef
    12. los Rios, A (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165: pp. 181-190 CrossRef
    13. los R铆os, A, Wierzchos, J, Sancho, LG, Ascaso, C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59: pp. 386-395 CrossRef
    14. Doran, PT (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986鈥?000. J Geophys Res 107: pp. 4772 CrossRef
    15. Elbert, W (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5: pp. 459-462 CrossRef
    16. Fay, P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: pp. 340-373
    17. Fraser, CI (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111: pp. 5634-5639 CrossRef
    18. Friedmann, EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215: pp. 68-74 CrossRef
    19. Friedmann, EI, Kibler, AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6: pp. 95-108 CrossRef
    20. Friedmann, EI, Kappen, L, Meyer, MA, Neinow, JA (1993) Long-term productivity in the cryptoendolithic community of the Ross Desert, Antarctica. Microb Ecol 25: pp. 51-69 CrossRef
    21. He, Z (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1: pp. 67-77 CrossRef
    22. Lee, CK (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6: pp. 1046-1057 CrossRef
    23. Maghales, C (2012) At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. PLoS One.
    24. Ng, KW, Pointing, SB, Dvornyk, V (2013) Patterns of nucleotide diversity in the idpA circadian gene in closely related species of cyanobacteria from extreme cold deserts. Appl Environ Microbiol 79: pp. 1516-1522 CrossRef
    25. Niederberger, TD (2012) Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol Ecol 82: pp. 376-390 CrossRef
    26. Pointing, SB, Belnap, J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10: pp. 551-562 CrossRef
    27. Pointing, SB (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China鈥檚 hot and cold hyperarid deserts. Environ Microbiol 9: pp. 414-424 CrossRef
    28. Pointing, SB (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106: pp. 19964-19969 CrossRef
    29. Pointing, SB, Bollard-Breen, B, Gillman, LN (2014) Diverse cryptic refuges for life during glaciation. Proc Natl Acad Sci USA 111: pp. 5452-5453 CrossRef
    30. Rao, S (2011) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35: pp. 567-574 CrossRef
    SCAR Bulletin #155. Polar Rec 40: pp. 371-382 CrossRef
    31. Thomas, DSG Arid zones: their nature and extent. In: Thomas, DSG eds. (1997) Arid zone geomorphology. Wiley, Chichester, pp. 3-12
    32. Wierzchos, J, los Rios, A, Ascaso, C (2013) Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15: pp. 171-181
    33. Wong, KY (2010) Hypolithic colonization of quartz pavement in the high altitude tundra of central Tibet. Microb Ecol 60: pp. 730-739 CrossRef
    34. Wong, KY (2010) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol 59: pp. 689-699 CrossRef
    35. Wynn-Williams, DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11: pp. 71-146 CrossRef
    36. Yung, C (2014) Characterization of chasmoendolithic community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microb Ecol 68: pp. 351-359
    37. Zhou, J (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci USA 105: pp. 7768-7773 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Oceanography
    Microbiology
    Plant Sciences
    Zoology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2056
文摘
The majority of biomass in the McMurdo Dry Valleys of Antarctica occurs within rocks and soils, but despite the wealth of biodiversity data very little is known about the potential functionality of communities within these substrates. The putative physiological capacity of microbial communities in granite boulders (chasmoendoliths) and soils of a maritime-influenced Antarctic Dry Valleys were interrogated using the GeoChip microarray. Diversity estimates revealed surprisingly high diversity and evenness in both communities, with Chlorobi and Deinococci in soils accounting for major differences between the substrates. Autotrophs were more diverse in chasmoendoliths, and diazotrophs more diverse in soils. Both substrates revealed a previously unappreciated abundance of Halobacteria (Archaea), Ascomycota (Fungi) and Basidiomycoyta (Fungi). The fungi accounted for much of the differences between substrates in metabolic pathways associated with carbon transformations, particularly for aromatic compounds. Nitrogen fixation genes were more common in soils, although nitrogen catabolism genes were abundant in chasmoendoliths. Stress response pathways were more diverse in chasmoendoliths, possibly reflecting greater environmental stress in this exposed substrate compared with subsurface soils. Overall diversity of stress-tolerance genes was markedly lower than that recorded for inland locations where environmental stress is exacerbated. We postulate that the chasmoendolithic community occupies a key role in biogeochemical transformations in Dry Valley systems where granite substrates are abundant among open soils. The findings indicate that a substantial upward revision to estimates of biologically active surfaces in this system is warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700