Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
详细信息    查看全文
  • 作者:De-Er Zeng (1)
    Pei Hou (1)
    Fangming Xiao (2)
    Yongsheng Liu (1) (3)

    1. Ministry of Education Key Laboratory for Bio-resource and Eco-environment
    ; College of Life Science ; State Key Laboratory of Hydraulics and Mountain River Engineering ; Sichuan University ; Chengdu ; 610064 ; People鈥檚 Republic of China
    2. Department of Plant
    ; Soil and Entomological Sciences ; University of Idaho ; Moscow ; ID ; 83844-2339 ; USA
    3. College of Agricultural and Life Sciences
    ; Chongqing University ; Chongqing ; 400030 ; China
  • 关键词:RING ; H2 ; Abscisic acid ; Drought stress ; Salt stress ; Tolerance ; Rice
  • 刊名:Journal of Plant Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:24
  • 期:1
  • 页码:56-64
  • 全文大小:2,541 KB
  • 参考文献:1. Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263鈥?274 CrossRef
    2. Aswath CR, Kim SH, Mo SY, Kim DH (2005) Transgenic plants of creeping bent grass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress. Plant Growth Regul 47:129鈥?39 CrossRef
    3. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23鈥?8 CrossRef
    4. Bopopi JM, Vandeputte OM, Himanen K, Mol A, Vaessen Q, El Jaziri M, Baucher M (2010) Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses. J Exp Bot 61:297鈥?10 CrossRef
    5. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187鈥?195 CrossRef
    6. Hadiarto T, Tran LSP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297鈥?10 CrossRef
    7. Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci 106:6410鈥?415 CrossRef
    8. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987鈥?2992 CrossRef
    9. Hu KM, Qiu DY, Shen XL, Li XH, Wang SP (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Biol 1:786鈥?93
    10. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in / Arabidopsis. Plant J 27:325鈥?33 CrossRef
    11. Kam J, Gresshoff P, Shorter R, Xue G-P (2007) Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Sci 173:650鈥?59 CrossRef
    12. Kang J-y, Choi H-i, Im M-y, Kim SY (2002) / Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343鈥?57 CrossRef
    13. Ko JH, Yang SH, Han KH (2006) Upregulation of an / Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343鈥?55 CrossRef
    14. Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51:92鈥?04
    15. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731鈥?748 CrossRef
    16. Liang Z, Ma D, Tang L, Hong Y, Luo A, Zhou J, Dai X (1997) Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants. Chin J Biotechnol 13:153
    17. Liu H, Zhang H, Yang Y, Li G, Wang X, Basnayake BMVS, Li D, Song F (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17鈥?0 CrossRef
    18. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for / Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci 102:12270鈥?2275 CrossRef
    19. Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316鈥?29 CrossRef
    20. Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee B, Lee CH, Moon YH (2008) Overexpression of / Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80鈥?5 CrossRef
    21. Qin X, Zeevaart JAD (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544鈥?51 CrossRef
    22. Schwechheimer C, Willige BC, Zourelidou M, Dohmann E (2009) Examining protein stability and its relevance for plant growth and development. Methods Mol Biol 479:1鈥?5 CrossRef
    23. Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2001) Abscisic aldehyde oxidase in leaves of / Arabidopsis thaliana. Plant J 23:481鈥?88 CrossRef
    24. Sun L, Zhang M, Ren J, Qi J, Zhang G, Leng P (2010) Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol 10:257
    25. Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ (2005) Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul 24:253鈥?73
    26. Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2001) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363鈥?74 CrossRef
    27. Verslues P, Zhu J (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375鈥?79 CrossRef
    28. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the Weld conditions. Theor Appl Genet 115:35鈥?6 CrossRef
    29. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167鈥?70 CrossRef
    30. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29鈥?6 CrossRef
    31. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781鈥?03 CrossRef
    32. Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y (2007) Global analysis of DELLA direct targets in early gibberellin signaling in / Arabidopsis. Plant Cell 19:3037鈥?057 CrossRef
    33. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in / Arabidopsis. Plant Cell 19:1912鈥?929 CrossRef
    34. Zhang X, Zhen J, Li Z, Kang D, Yang Y, Kong J, Hua J (2011) Expression profile of early responsive genes under salt stress in upland cotton ( / Gossypium hirsutum L.). Plant Mol Biol Rep 29:626鈥?37 CrossRef
    35. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247 CrossRef
  • 刊物主题:Life Sciences, general; Plant Biochemistry; Protein Science; Receptors; Cell Biology;
  • 出版者:Springer India
  • ISSN:0974-1275
文摘
Drought and salinity are two major limiting factors in rice (Oryza. sativa L.) productivity worldwide. XERICO, encoding a RING-H2 zinc finger protein, substantially enhanced drought tolerance by increasing ABA biosynthesis in Arabidopsis. Here, we report the isolation of the full-length cDNA of XERICO from Arabidopsis and its heterologous expression in rice (O. sativa L.). Homozygous transgenic plants overexpressing XERICO (OE-XERICO) exhibited hypersensitivity to stress stimuli (salt, osmotic stress and exogenous ABA) during seed germination and early seedling growth. When subjected to dehydration and salinity stress, 4-week-old transgenic seedlings showed a considerable increase in tolerance to these stimuli compared with that of the wild type (WT) seedlings. Detached leaves from the transgenic rice lines showed lower transpirational water loss than WT. The OE-XERICO lines exhibited a significant increase in endogenous ABA contents, and expression levels of Four ABA biosynthesis or ABA-response genes, OsNCED, OsABA3, OsABI5, OsLEA3-1, under drought and salt stress condition. These results suggest that the overexpression of XERICO in rice plants confers improved drought and salt tolerance probably through enhanced ABA level and ABA-mediated stress response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700