Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection
详细信息    查看全文
  • 作者:Il Young Jung ; Eun Hee Lee ; Ah Young Suh…
  • 关键词:Biosensors ; Oligonucelotide ; In vitro diagnosis ; Environmental harzard detection
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:408
  • 期:10
  • 页码:2383-2406
  • 全文大小:1,699 KB
  • 参考文献:1.Blum LJ, Coulet PR (eds) (1991) Biosensor principles and applications. Bioprocess technology, vol 15. Dekker, New York
    2.Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee YK, Jaffa AA (2014) Recent advances in application of biosensors in tissue engineering. BioMed Res Int 2014:307519. doi:10.​1155/​2014/​307519
    3.Maruthappu M, Williams C (2013) The biomarket. Glob Public Health 8(1):106–119. doi:10.​1080/​17441692.​2012.​758300 CrossRef
    4.Huang H, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25(4):927–930. doi:10.​1016/​j.​bios.​2009.​08.​008 CrossRef
    5.Khan A, Khan AA, Asiri AM, Rub MA, Azum N, Rahman MM, Khan SB, Ghani SA (2013) A new trend on biosensor for neurotransmitter choline/acetylcholine—an overview. Appl Biochem Biotechnol 169(6):1927–1939. doi:10.​1007/​s12010-013-0099-0 CrossRef
    6.Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59(1):110–118. doi:10.​1373/​clinchem.​2012.​194258 CrossRef
    7.Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.​1038/​nature06385 CrossRef
    8.Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, Lin J, Ramnath N, Wicha MS, Hayes DF, Simeone DM, Nagrath S (2013) Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 8(10):735–741. doi:10.​1038/​nnano.​2013.​194 CrossRef
    9.Williams SC (2013) Circulating tumor cells. Proc Natl Acad Sci U S A 110(13):4861. doi:10.​1073/​pnas.​1304186110 CrossRef
    10.Plaks V, Koopman CD, Werb Z (2013) Cancer. Circulating tumor cells. Science 341(6151):1186–1188. doi:10.​1126/​science.​1235226 CrossRef
    11.Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. doi:10.​1126/​science.​1228522 CrossRef
    12.Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW (2014) Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8(1):941–949. doi:10.​1021/​nn405744f CrossRef
    13.Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y (2013) Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 85(5):2809–2816CrossRef
    14.Liu H, Xu S, He Z, Deng A, Zhu JJ (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85(6):3385–3392. doi:10.​1021/​ac303789x CrossRef
    15.Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83(3):727–734. doi:10.​1021/​ac102263v CrossRef
    16.Park JM, Lee JY, Lee JG, Jeong H, Oh JM, Kim YJ, Park D, Kim MS, Lee HJ, Oh JH, Lee SS, Lee WY, Huh N (2012) Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal Chem 84(17):7400–7407. doi:10.​1021/​ac3011704 CrossRef
    17.Wu Y, Xue P, Kang Y, Hui KM (2013) Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Anal Chem 85(6):3166–3173. doi:10.​1021/​ac303398b CrossRef
    18.Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81(17):7436–7442. doi:10.​1021/​ac9012072 CrossRef
    19.Yang X, Li J, Pei H, Zhao Y, Zuo X, Fan C, Huang Q (2014) DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. Anal Chem 86(6):3227–3231. doi:10.​1021/​ac500381e CrossRef
    20.Yin J, He X, Wang K, Xu F, Shangguan J, He D, Shi H (2013) Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem 85(24):12011–12019. doi:10.​1021/​ac402989u CrossRef
    21.Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H (2013) Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces. Anal Chem 85(11):5609–5616. doi:10.​1021/​ac400994p CrossRef
    22.Maltez-da Costa M, de la Escosura-Muniz A, Nogues C, Barrios L, Ibanez E, Merkoci A (2012) Simple monitoring of cancer cells using nanoparticles. Nano Lett 12(8):4164–4171. doi:10.​1021/​nl301726g CrossRef
    23.Wu Y, Sefah K, Liu H, Wang R, Tan W (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 107(1):5–10. doi:10.​1073/​pnas.​0909611107 CrossRef
    24.Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X (2014) Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal Chem 86(15):7843–7848. doi:10.​1021/​ac502276w CrossRef
    25.Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY (2003) An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis 15(3):219–224CrossRef
    26.Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259CrossRef
    27.Soleymani L, Fang Z, Sargent EH, Kelley SO (2009) Programming the detection limits of biosensors through controlled nanostructuring. Nat Nanotechnol 4(12):844–848. doi:10.​1038/​nnano.​2009.​276 CrossRef
    28.Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43(5):631–641. doi:10.​1021/​ar900245u CrossRef
    29.Tang Y, Ge B, Sen D, Yu HZ (2014) Functional DNA switches: rational design and electrochemical signaling. Chem Soc Rev 43(2):518–529. doi:10.​1039/​c3cs60264h CrossRef
    30.Grunnet M, Sorensen JB (2012) Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76(2):138–143. doi:10.​1016/​j.​lungcan.​2011.​11.​012 CrossRef
    31.Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47(4):624–630
    32.Bohunicky B, Mousa SA (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10
    33.Beveridge RA, Chan DW, Bruzek D, Damron D, Bray KR, Gaur PK, Ettinger DS, Rock RC, Shurbaji MS, Kuhajda FP (1988) A new biomarker in monitoring breast cancer: CA 549. J Clin Oncol 6(12):1815–1821
    34.Liang K, Zhai S, Zhang Z, Fu X, Shao J, Lin Z, Qiu B, Chen G (2014) Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Analyst 139(17):4330–4334CrossRef
    35.Wu Z-S, Zhou H, Zhang S, Shen G, Yu R (2010) Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem 82(6):2282–2289CrossRef
    36.Xiao SJ, Hu PP, Li YF, Huang CZ, Huang T, Xiao GF (2009) Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 79(5):1283–1286CrossRef
    37.Zhang DY, Zhang W, Li X, Konomi Y (2001) Detection of rare DNA targets by isothermal ramification amplification. Gene 274(1):209–216CrossRef
    38.Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target‐primed and branched rolling‐circle amplification. Angew Chem 121(18):3318–3322CrossRef
    39.Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89(4):1105–1152CrossRef
    40.Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474. doi:10.​1038/​370471a0 CrossRef
    41.Xiao S, Ou-Yang Y, Zhang X, Li X, Yang S, Chen H (2012) Aptamer-based assay for prion diseases diagnostic. Procedia Environ Sci 12:1348–1353CrossRef
    42.Gilch S, Schätzl HM (2009) Aptamers against prion proteins and prions. Cell Mol Life Sci 66(15):2445–2455CrossRef
    43.Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390CrossRef
    44.Sekiya S, Nishikawa F, Noda K, Kumar P, Yokoyama T, Nishikawa S (2005) In vitro selection of RNA aptamers against cellular and abnormal isoform of mouse prion protein. Nucleic Acids Symp Ser 49(1):361–362
    45.Gilch S, Kehler C, Schätzl HM (2007) Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J Mol Biol 371(2):362–373CrossRef
    46.Safar JG, Kellings K, Serban A, Groth D, Cleaver JE, Prusiner SB, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79(16):10796–10806CrossRef
    47.Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362(4):329–344. doi:10.​1056/​NEJMra0909142 CrossRef
    48.Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 1(2):213–225CrossRef
    49.Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, Morris JC, McKeel DW, Farlow M, Weitlauf SL (2003) Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60(12):1696–1702CrossRef
    50.Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer's disease. Lancet Neurol 2(10):605–613CrossRef
    51.Teunissen C, De Vente J, Steinbusch H, De Bruijn C (2002) Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 23(4):485–508CrossRef
    52.Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A 102(7):2273–2276CrossRef
    53.Keating CD (2005) Nanoscience enables ultrasensitive detection of Alzheimer's biomarker. Proc Natl Acad Sci U S A 102(7):2263–2264CrossRef
    54.Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540
    55.Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538CrossRef
    56.Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28(1):112–125CrossRef
    57.Young K-C, Chang T-T, Hsiao W-C, Cheng P-N, Chen S-H, Jen C-M (2002) A reverse-transcription competitive PCR assay based on chemiluminescence hybridization for detection and quantification of hepatitis C virus RNA. J Virol Methods 103(1):27–39CrossRef
    58.Fagan EA, Guarner P, Perera SD, Trowbridge R, Rolando N, Davison F, Williams R (1985) Quantitation of hepatitis B virus DNA (HBV DNA) in serum using the spot hybridization technique and scintillation counting. J Virol Methods 12(3):251–262CrossRef
    59.Almeida RP, Cardoso DD (2006) Detection of HBV DNA by nested-PCR in a HBsAg and anti-HBc negative blood bank donor. J Clin Virol 36(3):231–234CrossRef
    60.Vincenti D, Solmone M, Garbuglia AR, Iacomi F, Capobianchi MR (2009) A sensitive direct sequencing assay based on nested PCR for the detection of HBV polymerase and surface glycoprotein mutations. J Virol Methods 159(1):53–57CrossRef
    61.Mei SD, Yatsuhashi H, del Carmen PM, Hamada R, Fujino T, Matsumoto T, Inoue O, Koga M, Yano M (2000) Detection of HBV RNA in peripheral blood mononuclear cells in patients with and without HBsAg by reverse transcription polymerase chain reaction. Hepatol Res 18(1):19–28CrossRef
    62.Cha BH, Lee S-M, Park JC, Hwang KS, Kim SK, Lee Y-S, Ju B-K, Kim TS (2009) Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron 25(1):130–135CrossRef
    63.Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N (2008) An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B 134(2):755–760CrossRef
    64.Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W (2012) Diagnostic devices for isothermal nucleic acid amplification. Sensors 12(6):8319–8337CrossRef
    65.Yao C, Xiang Y, Deng K, Xia H, Fu W (2013) Sensitive and specific HBV genomic DNA detection using RCA-based QCM biosensor. Sens Actuators B 181:382–387CrossRef
    66.Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29(5):240–250. doi:10.​1016/​j.​tibtech.​2011.​01.​007 CrossRef
    67.Zhang DY, Brandwein M, Hsuih TC, Li H (1998) Amplification of target-specific, ligation-dependent circular probe. Gene 211(2):277–285CrossRef
    68.Hatch A, Sano T, Misasi J, Smith CL (1999) Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet Anal 15(2):35–40CrossRef
    69.McCarthy EL, Bickerstaff LE, da Cunha MP, Millard PJ (2007) Nucleic acid sensing by regenerable surface-associated isothermal rolling circle amplification. Biosens Bioelectron 22(7):1236–1244. doi:10.​1016/​j.​bios.​2006.​05.​001 CrossRef
    70.Lee HY, Jeong H, Jung IY, Jang B, Seo YC, Lee H, Lee H (2015) DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels. Adv Mater 27(23):3513–3517. doi:10.​1002/​adma.​201500414 CrossRef
    71.Mokhtarzadeh A, Dolatabadi JE, Abnous K, de la Guardia M, Ramezani M (2015) Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 68:95–106. doi:10.​1016/​j.​bios.​2014.​12.​052 CrossRef
    72.Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C (2011) DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Anal Chem 83(19):7418–7423. doi:10.​1021/​ac201491p CrossRef
    73.Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831CrossRef
    74.Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem 47(40):7602–7625. doi:10.​1002/​anie.​200800169 CrossRef
    75.Li Y, Ji X, Liu B (2011) Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal Bioanal Chem 401(1):213–219. doi:10.​1007/​s00216-011-5064-6 CrossRef
    76.Bi S, Yan Y, Yang X, Zhang S (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chemistry 15(18):4704–4709. doi:10.​1002/​chem.​200801722 CrossRef
    77.Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506. doi:10.​1126/​science.​1067003
    78.He JL, Wu ZS, Zhou H, Wang HQ, Jiang JH, Shen GL, Yu RQ (2010) Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal Chem 82(4):1358–1364. doi:10.​1021/​ac902416u CrossRef
    79.Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79(9):3320–3329. doi:10.​1021/​ac062186b CrossRef
    80.Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JD, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256. doi:10.​1128/​CMR.​19.​1.​165-256.​2006 CrossRef
    81.Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. doi:10.​1038/​nmeth947 CrossRef
    82.Nallur G, Luo C, Fang L, Cooley S, Dave V, Lambert J, Kukanskis K, Kingsmore S, Lasken R, Schweitzer B (2001) Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res 29(23):e118CrossRef
    83.Di Giusto DA, Wlassoff WA, Gooding JJ, Messerle BA, King GC (2005) Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res 33(6):e64. doi:10.​1093/​nar/​gni063 CrossRef
    84.Kjallman TH, Peng H, Soeller C, Travas-Sejdic J (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem 80(24):9460–9466. doi:10.​1021/​ac801567d CrossRef
    85.Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan W, Shen GL, Yu RQ (2011) Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity. Anal Chem 83(13):5062–5066. doi:10.​1021/​ac200843x CrossRef
    86.Yin BC, Ye BC, Tan W, Wang H, Xie CC (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131(41):14624–14625. doi:10.​1021/​ja9062426 CrossRef
    87.Guo L, Nie D, Qiu C, Zheng Q, Wu H, Ye P, Hao Y, Fu F, Chen G (2012) A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens Bioelectron 35(1):123–127. doi:10.​1016/​j.​bios.​2012.​02.​031 CrossRef
    88.He HZ, Leung KH, Yang H, Chan DS, Leung CH, Zhou J, Bourdoncle A, Mergny JL, Ma DL (2013) Label-free detection of sub-nanomolar lead(II) ions in aqueous solution using a metal-based luminescent switch-on probe. Biosens Bioelectron 41:871–874. doi:10.​1016/​j.​bios.​2012.​08.​060 CrossRef
    89.Wen Y, Peng C, Li D, Zhuo L, He S, Wang L, Huang Q, Xu QH, Fan C (2011) Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem Commun 47(22):6278–6280. doi:10.​1039/​c1cc11486g CrossRef
    90.Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, Zhang LH, He L, Guo Y, He XX, Lai MY, He YB (2014) Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II) detection based on Pb2+-induced G-rich DNA conformation. Analyst, U K) 139(19):5014–5020. doi:10.​1039/​c4an00874j
    91.Long YT, Kong C, Li DW, Li Y, Chowdhury S, Tian H (2011) Ultrasensitive determination of cysteine based on the photocurrent of Nafion-functionalized CdS-MV quantum dots on an ITO electrode. Small 7(12):1624–1628. doi:10.​1002/​smll.​201100427 CrossRef
    92.Lu W, Jin Y, Wang G, Chen D, Li J (2008) Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosens Bioelectron 23(10):1534–1539. doi:10.​1016/​j.​bios.​2008.​01.​011 CrossRef
    93.Chen D, Zhang H, Li X, Li J (2010) Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal Chem 82(6):2253–2261. doi:10.​1021/​ac9021055 CrossRef
    94.Zang Y, Lei J, Hao Q, Ju H (2014) "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces 6(18):15991–15997. doi:10.​1021/​am503804g CrossRef
    95.Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5(10):591–597. doi:10.​1038/​nphoton.​2011.​206 CrossRef
    96.Long F, Zhu A, Wang H (2014) Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal Chim Acta 849:43–49. doi:10.​1016/​j.​aca.​2014.​08.​015 CrossRef
    97.Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D (2007) A colorimetric and fluorometric dual-model assay for mercury ion by a molecule. Org Lett 9(12):2313–2316. doi:10.​1021/​ol0706399 CrossRef
    98.Ye BC, Yin BC (2008) Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem 47(44):8386–8389. doi:10.​1002/​anie.​200803069 CrossRef
    99.Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022. doi:10.​1016/​j.​talanta.​2009.​11.​010 CrossRef
    100.Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRef
    101.Shen T, Yue Q, Jiang X, Wang L, Xu S, Li H, Gu X, Zhang S, Liu J (2013) A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Talanta 117:81–86. doi:10.​1016/​j.​talanta.​2013.​08.​017
    102.Osman O, Zanini LF, Frenea-Robin M, Dumas-Bouchiat F, Dempsey NM, Reyne G, Buret F, Haddour N (2012) Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdevices 14(5):947–954. doi:10.​1007/​s10544-012-9673-4 CrossRef
    103.Upadhyay AK, Ting TW, Chen SM (2009) Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes. Talanta 79(1):38–45. doi:10.​1016/​j.​talanta.​2009.​03.​010 CrossRef
    104.Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem 47(21):3927–3931. doi:10.​1002/​anie.​200705991 CrossRef
    105.Liu J, Lu Y (2007) Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem 46(40):7587–7590. doi:10.​1002/​anie.​200702006 CrossRef
    106.Lee J, Jun H, Kim J (2009) Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection. Adv Mater 21(36):3674–3677. doi:10.​1002/​adma.​200900639 CrossRef
    107.Yang YK, Ko SK, Shin I, Tae J (2007) Synthesis of a highly metal-selective rhodamine-based probe and its use for the in vivo monitoring of mercury. Nat Protoc 2(7):1740–1745. doi:10.​1038/​nprot.​2007.​246 CrossRef
    108.Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79(12):4427–4432. doi:10.​1021/​ac0621773 CrossRef
    109.Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem 51(45):11214–11223. doi:10.​1002/​anie.​201204438 CrossRef
    110.Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M (2013) Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 7(5):4595–4600. doi:10.​1021/​nn4013737 CrossRef
    111.Liu SJ, Nie HG, Jiang JH, Shen GL, Yu RQ (2009) Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem 81(14):5724–5730. doi:10.​1021/​ac900527f CrossRef
    112.Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad Taghdisi S (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. doi:10.​1016/​j.​bios.​2015.​03.​040 CrossRef
    113.Verdian-Doghaei A, Housaindokht MR, Abnous K (2014) A fluorescent aptasensor for potassium ion detection-based triple-helix molecular switch. Anal Biochem 466:72–75. doi:10.​1016/​j.​ab.​2014.​08.​014 CrossRef
    114.Zheng J, Li JS, Jiang Y, Jin JY, Wang KM, Yang RH, Tan WH (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83(17):6586–6592. doi:10.​1021/​Ac201314y CrossRef
    115.Shariati S, Yamini Y, Esrafili A (2009) Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics. J Chromatogr B 877(4):393–400. doi:10.​1016/​j.​jchromb.​2008.​12.​042 CrossRef
    116.Kurittu J, Lonnberg S, Virta M, Karp M (2000) A group-specific microbiological test for the detection of tetracycline residues in raw milk. J Agric Food Chem 48(8):3372–3377CrossRef
    117.Jeon M, Rhee Paeng I (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626(2):180–185. doi:10.​1016/​j.​aca.​2008.​08.​003 CrossRef
    118.Zhou L, Li DJ, Gai L, Wang JP, Li YB (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens Actuators B 162(1):201–208. doi:10.​1016/​j.​snb.​2011.​12.​067 CrossRef
    119.Tao HL, Wei LL, Liang AH, Li JF, Jiang ZL, Jiang HS (2010) Highly sensitive resonance scattering detection of DNA hybridization using aptamer-modified gold nanopaticle as catalyst. Plasmonics 5(2):189–198. doi:10.​1007/​s11468-010-9133-z CrossRef
    120.Luo Y, He L, Zhan S, Wu Y, Liu L, Zhi W, Zhou P (2014) Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. J Agric Food Chem 62(5):1032–1037. doi:10.​1021/​jf403566e CrossRef
    121.Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134(30):12410–12413. doi:10.​1021/​ja305238a CrossRef
    122.Wu Y, Li C, Boldt F, Wang Y, Kuan SL, Tran TT, Mikhalevich V, Fortsch C, Barth H, Yang Z, Liu D, Weil T (2014) Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem Commun 50(93):14620–14622. doi:10.​1039/​c4cc07144a CrossRef
    123.Liu R, Huang Y, Ma Y, Jia S, Gao M, Li J, Zhang H, Xu D, Wu M, Chen Y, Zhu Z, Yang C (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces 7(12):6982–6990. doi:10.​1021/​acsami.​5b01120 CrossRef
    124.Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L (2012) Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 3:1283. doi:10.​1038/​ncomms2292 CrossRef
    125.Park JH, Byun JY, Mun H, Shim WB, Shin YB, Li T, Kim MG (2014) A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron 59:321–327. doi:10.​1016/​j.​bios.​2014.​03.​059 CrossRef
    126.Cho EM, Lee HS, Eom CY, Ohta A (2010) Construction of high sensitive detection system for endocrine disruptors with yeast n-alkane-assimilating Yarrowia lipolytica. J Microbiol Biotechnol 20(11):1563–1570CrossRef
    127.Alonso-Magdalena P, Quesada I, Nadal A (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7(6):346–353. doi:10.​1038/​nrendo.​2011.​56 CrossRef
    128.Lehmann GM, Christensen K, Maddaloni M, Phillips LJ (2015) Evaluating health risks from inhaled polychlorinated biphenyls: research needs for addressing uncertainty. Environ Health Perspect 123(2):109–113. doi:10.​1289/​ehp.​1408564
    129.Rezg R, El-Fazaa S, Gharbi N, Mornagui B (2014) Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64:83–90. doi:10.​1016/​j.​envint.​2013.​12.​007 CrossRef
  • 作者单位:Il Young Jung (1)
    Eun Hee Lee (1)
    Ah Young Suh (1)
    Seung Jin Lee (1)
    Hyukjin Lee (1)

    1. College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700