Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model
详细信息    查看全文
  • 作者:Gianpaolo Coro ; Chiara Magliozzi…
  • 关键词:AquaMaps ; Big Data ; Climate change ; Clustering analysis ; Ecological niche modelling ; GIS ; Maps comparison ; OGC standards ; Species distribution maps
  • 刊名:Environmental and Ecological Statistics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:155-180
  • 全文大小:2,136 KB
  • 参考文献:Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17(5):1798–1808CrossRef
    Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688CrossRef
    Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11(9):1504–1513CrossRef
    Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res Oceans (1978–2012) 113(C8):15587–15600
    Assunçaoa MD, Calheirosb RN, Bianchia S, Nettoa MA, Buyyab R (2013) Big Data computing and clouds: challenges, solutions, and future directions. arXiv:​1312.​4722
    Barratt P, Cavanagh RD (2015) Heterodontus zebra in the IUCN red list of threatened species. Version 2014.3, www.​iucnredlist.​org
    Bellwood D, Hughes T, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833CrossRef PubMed
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517CrossRef
    Berry P, Dawson T, Harrison P, Pearson R (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11(6):453–462CrossRef
    BEST Commission (2003) The national invasive species strategy for the Bahamas. BEST, Nassau, The Bahamas 40
    Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RH, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Skjoldborg Hansen A, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57(3):227–236CrossRef
    Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19(14):R602–R614CrossRef PubMed
    Campbell P (2008) Editorial on special issue on big data: community cleverness required. Nature 455(7209):1CrossRef
    Candela L, Castelli D, Coro G, Lelii L, Mangiacrapa F, Marioli V, Pagano P (2014) An infrastructure-oriented approach for supporting biodiversity research. Ecol Inform 26:162–172. doi:10.​1016/​j.​ecoinf.​2014.​07.​006 CrossRef
    Cao D, Song L, Zhang Y, Lv K, Hu Z (2011) Environmental preferences of Alopias superciliosus and Alopias vulpinus in waters near Marshall Islands. N Z J Mar Freshw Res 45(1):103–119CrossRef
    Carlens H, Lydersen C, Krafft BA, Kovacs KM (2006) Spring haul-out behavior of ringed seals (Pusa hispida) in Kongsfjorden. Svalbard. Mar Mamm Sci 22(2):379–393CrossRef
    Castelli D, Michel J (2011) D4SCIENCE-II—data infrastructures ecosystem for science. Project final report. Data Infrastructures Ecosystem for Science. Deliverable DNA1.7
    Castelli D, Taconet M, Garavelli S, Parker S (2013) iMarine infrastructure for data driven decision making and research: position paper. Presentation at the iMarine e-infrastructure Workshop for data-driven decision making and research, 14–15 May, Brussels, Belgium
    Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10(3):235–251CrossRef
    Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16(1):24–35CrossRef
    Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68(6):1008–1018CrossRef
    Chin A, Kyne PM, Walker TI, McAULEY R (2010) An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob Change Biol 16(7):1936–1953CrossRef
    Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510CrossRef
    CNR T (2015) The gCube GeoExplorer. https://​gcube.​wiki.​gcube-system.​org/​gcube/​index.​php/​GeoExplorer
    Cohen J et al (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRef
    Coro G, Gioia A, Pagano P, Candela L (2013) A service for statistical analysis of marine data in a distributed e-infrastructure. Boll di Geofis Teorica e Appl 54(1):68–70
    Coro G, Pagano P, Ellenbroek A (2014) Comparing heterogeneous distribution maps for marine species. GISci Remote Sens 51(5):593–611CrossRef
    Coro G, Candela L, Pagano P, Italiano A, Liccardo L (2015) Parallelizing the execution of native data mining algorithms for computational biology. Concurr Comput Pract Exp 27(17):4630–4644. doi:10.​1002/​cpe.​3435 CrossRef
    Corsi F, de Leeuw J, Skidmore A (2000) Modeling species distribution with GIS. Research Techniques in Animal Ecology, Columbia University Press, New York, pp 389–434
    Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19(3):883–899CrossRef
    Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58CrossRef PubMed
    de La Beaujardière J (2004) OGC Web Map Service Interface, version 1.3.0. Open Geospatial Consortium
    Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45(4):1029–1039CrossRef
    Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 151–176CrossRef
    Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231
    FAO (2015) Fact sheets. http://​www.​fao.​org/​newsroom/​en/​facts/​index.​html
    Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378CrossRef
    GCube (2015) The GCube Featherweight Stack. http://​gcube.​wiki.​gcube-system.​org/​gcube/​index.​php/​Featherweight_​Stack
    Genner MJ, Sims DW, Wearmouth VJ, Southall EJ, Southward AJ, Henderson PA, Hawkins SJ (2004) Regional climatic warming drives long-term community changes of British marine fish. Proc R Soc Lond Ser B Biol Sci 271(1539):655–661CrossRef
    Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol Appl 20(2):452–464CrossRef PubMed
    Heino M, Engelhard GH, Godo OR (2008) Migrations and hydrography determine the abundance fluctuations of blue whiting (Micromesistius poutassou) in the Barents Sea. Fish Oceanogr 17(2):153–163CrossRef
    Hey AJ, Tansley S, Tolle KM et al (2009) The fourth paradigm: data-intensive scientific discovery, vol 1. Microsoft Research Redmond, WA
    Hiddink J, Ter Hofstede R (2008) Climate induced increases in species richness of marine fishes. Glob Change Biol 14(3):453–460CrossRef
    Hsieh CH, Kim HJ, Watson W, Di Lorenzo E, Sugihara G (2009) Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob Change Biol 15(9):2137–2152CrossRef
    Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evolut 20(7):380–386CrossRef
    Hyrenbach KD, Veit RR (2003) Ocean warming and seabird communities of the southern California Current System (1987–98): response at multiple temporal scales. Deep Sea Res Part II Top Stud Oceanogr 50(14):2537–2565CrossRef
    IUCN (2015) The IUCN Red List of species. www.​iucnredlist.​org
    Jordà G, Marbà N, Duarte CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Change 2(11):821–824CrossRef
    Kaschner K, Watson R, Trites A, Pauly D (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310CrossRef
    Knights B (2003) A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. Sci Total Environ 310(1):237–244CrossRef PubMed
    Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19(1):103–132CrossRef
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 1:159–174CrossRef
    Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over europe, north africa and the middle east. Glob Change Biol 15(5):1072–1089CrossRef
    Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the Great Barrier Reef to climate change. http://​hdl.​handle.​net/​11017/​548
    Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27–32CrossRef
    MacLeod CD (2009) Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger Species Res 7(2):125–136CrossRef
    MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. California, USA, pp 281–297
    Marzec RJ, Kim Y, Powell EN (2010) Geographical trends in weight and condition index of surfclams (Spisula solidissima) in the Mid-Atlantic Bight. J Shellfish Res 29(1):117–128CrossRef
    Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18(2):309–320CrossRef PubMed
    Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Special report on emissions scenarios, In: Nakicenovic N, Swart R (ed) pp 612 ISBN 0521804930, Cambridge University Press, Cambridge, UK, 1 July 2000
    Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129CrossRef
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evolut Syst 1:637–669CrossRef
    Pearson RG (2012) Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://​ncep.​amnh.​org
    Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371CrossRef
    Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: ICML, pp 727–734
    Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22(8):933–941PubMedCentral CrossRef PubMed
    Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308(5730):1912–1915CrossRef PubMed
    Ready J, Kaschner K, South AB, Eastwood PD, Rees T, Rius J, Agbayani E, Kullander S, Froese R (2010) Predicting the distributions of marine organisms at the global scale. Ecol Model 221(3):467–478. doi:10.​1016/​j.​ecolmodel.​2009.​10.​025 CrossRef
    Reyes K (2015) AquaMaps: algorithm and data sources for aquatic organisms. http://​www.​aquamaps.​org/​main/​FB_​Book_​KReyes_​AquaMaps_​JG.​pdf
    Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B et al (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Max-Planck-Institut für Meteorologie, Hamburg
    Sardella BA, Sanmarti E, Kültz D (2008) The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. J Exp Zool Part A Ecol Genet Physiol 309(8):477–483CrossRef
    Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156CrossRef
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRef
    Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4:39–61CrossRef PubMed
    Sorvari S, Brus M (2012) ENVRI—overcoming the environmental challenges with common solutions. EPOS newsletter, February
    Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2(9):686–690CrossRef
    Sydeman W, García-Reyes M, Schoeman D, Rykaczewski R, Thompson S, Black B, Bograd S (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science 345(6192):77–80CrossRef PubMed
    Thompson KF, Millar CD, Baker CS, Dalebout M, Steel D, van Helden AL, Constantine R (2013) A novel conservation approach provides insights into the management of rare cetaceans. Biol Conserv 157:331–340CrossRef
    Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10(12):2020–2027CrossRef
    Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250PubMedCentral CrossRef PubMed
    Tzeng WN, Tseng YH, Han YS, Hsu CC, Chang CW, Di Lorenzo E, Hsieh Ch (2012) Evaluation of multi-scale climate effects on annual recruitment levels of the Japanese eel, Anguilla japonica, to Taiwan. PLoS One 7(2):e30,805
    Waldrop MM (2008) Science 2.0. Sci Am 298(5):68–73CrossRef PubMed
    Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17(2):1235–1249CrossRef
    Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci 105(48):18,848–18,853
  • 作者单位:Gianpaolo Coro (1)
    Chiara Magliozzi (1)
    Anton Ellenbroek (2)
    Kristin Kaschner (3)
    Pasquale Pagano (1)

    1. Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNR, via Moruzzi 1, 56124, Pisa, Italy
    2. Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy
    3. Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs University, Hauptstrasse 1, 79104, Freiburg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Statistics
    Mathematical Biology
    Evolutionary Biology
  • 出版者:Springer Netherlands
  • ISSN:1573-3009
文摘
Habitat modifications driven by human impact and climate change may influence species distribution, particularly in aquatic environments. Niche-based models are commonly used to evaluate the availability and suitability of habitat and assess the consequences of future climate scenarios on a species range and shifting edges of its distribution. Together with knowledge on biology and ecology, niche models also allow evaluating the potential of species to react to expected changes. The availability of projections of future climate scenarios allows comparing current and future niche distributions, assessing a species’ habitat suitability modification and shift, and consequently estimating potential species’ reaction. In this study, differences between the distribution maps of 406 marine species, which were produced by the AquaMaps niche models on current and future (year 2050) scenarios, were estimated and evaluated. Discrepancy measurements were used to identify a discrete number of categories, which represent different responses to climate change. Clustering analysis was then used to automatically detect these categories, demonstrating their reliability compared to human supervised classification. Finally, the distribution of characteristics like extinction risk (based on IUCN categories), taxonomic groups, population trends and habitat suitability change over the clustering categories was evaluated. In this assessment, direct human impact was neglected, in order to focus only on the consequences of environmental changes. Furthermore, in the comparison between two climate snapshots, the intermediate phases were assumed to be implicitly included into the model of the 2050 climate scenario. Keywords AquaMaps Big Data Climate change Clustering analysis Ecological niche modelling GIS Maps comparison OGC standards Species distribution maps

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700