Modelling of future mass balance changes of Norwegian glaciers by application of a dynamical–statistical model
详细信息    查看全文
  • 作者:Sebastian Mutz ; Heiko Paeth ; Stefan Winkler
  • 关键词:Climate change ; Dynamic–statistical modelling ; Glacier mass balance ; Norway
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:5-6
  • 页码:1581-1597
  • 全文大小:7,761 KB
  • 参考文献:Andreassen LM, Oerlemans J (2009) Modelling long-term summer and winter balances and the climate sensitivity of Storbreen, Norway. Geogr Ann 91(4):233–251. doi:10.​1111/​j.​1468-0459.​2009.​00366.​x CrossRef
    Andreassen LM, Winsvold SH (2012) Inventory of Norwegian glaciers. Norwegian Water Resources and Energy Directorate, Oslo
    Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass-balance and length variation in Norway. Ann Glaciol 42:317–325. doi:10.​3189/​1727564057818128​26 CrossRef
    Andreassen LM, Paul F, Kaab A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2:131–145. doi:10.​5194/​tc-2-131-2008 CrossRef
    Andreassen LM, Elvehøy H, Jackson M, Kjøllmoen B, Engeset RV, Giesen RH (2011) Glaciological investigations in Norway in 2010. Report 3/2011. Norges Vassdrags- og Energidirektoratet, Oslo
    Anonymous (1969) Mass-balance terms. J Glaciol 8(52):3–7
    Bamber JL, Payne A (2004) Mass balance of the cryosphere. Observations and modelling of contemporary and future changes. Cambridge University Press, CambridgeCrossRef
    Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126CrossRef
    Barry R (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 20:285. doi:10.​1191/​0309133306pp478r​a CrossRef
    Berliner LM, Levine RA, Shea DJ (2000) Bayesian climate change assessment. J Clim 13:3805–3820. doi:10.​1175/​1520-0442(2000)013%3C3805:​BCCA%3E2.​0.​CO;2 CrossRef
    Braithwaite RJ, Zhang Y (1999) Modelling changes in mass balance that may occur as a result of climate changes. Geogr Ann 81A(4):489–496CrossRef
    Caldeira K, Jain A, Hoffert M (2003) Climate sensitivity uncertainty and the need for energy without CO2 emissions. Science 299:2052–2054. doi:10.​1126/​science.​1078938 CrossRef
    Chinn T, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr Ann 87(1):141–157. doi:10.​1111/​j.​0435-3676.​2005.​00249.​x CrossRef
    Cogley JG (2010) Mass-balance terms revisited. J Glaciol 56(200):997–1001CrossRef
    Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology 86, IACS Contribution 2, UNESCO-IHP, Paris
    D’Agostini G (2003) Bayesian inference in progressing experimental data: principles and basic applications. Rep Prog Phys 66(9):1383–1419. doi:10.​1088/​0034-4885/​66/​9/​201 CrossRef
    Dyurgerov M (2003) Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. J Hydrol 282:164–176. doi:10.​1016/​S0022-1694(03)00254-3 CrossRef
    Dyurgerov M (2005) Mountain glaciers are at risk of extinction. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change in mountain regions. Springer, Netherlands, pp 177–185CrossRef
    Dyurgerov M, Meier M (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci USA 97:1406–1411. doi:10.​1073/​pnas.​97.​4.​1406 CrossRef
    Engelhardt M, Schuler TV, Andreassen LM (2014) Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol Earth Syst Sci 18(2):511–523. doi:10.​5194/​hess-18-511-2014 CrossRef
    Fealy R, Sweeney J (2005) Detection of a possible change point in atmospheric variability in the North Atlantic and its effects on Scandinavian glacier mass balance. Int J Climatol 25:1819–1833. doi:10.​1002/​joc.​1231 CrossRef
    Friedrichs P, Paeth H (2006) Seasonal prediction of African precipitation with ECHAM4–T42 ensemble simulations using a multivariate MOS re-calibration scheme. Clim Dyn 27:761–786. doi:10.​1007/​s00382-006-0154-4 CrossRef
    Giorgi F, Coppola E (2009) Projections of twenty-first century climate over Europe. Eur Phys J Conf 1:29–46. doi:10.​1140/​epjconf/​e2009-00908-9 CrossRef
    Glahn H, Lowry D (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211. doi:10.​1175/​1520-0450(1972)011<1203:​TUOMOS>2.​0.​CO;2 CrossRef
    Haeberli W, Beniston M (1998) Climate change and its impact on glaciers and permafrost in the Alps. Ambio 27:258–265
    Haeberli W, Frauenfelder R, Hoelzle M, Maisch M (1999) On rates and acceleration trends of global glacier mass changes. Geogr Ann 81A:585–591. doi:10.​1111/​1468-0459.​00086 CrossRef
    Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 31:241–246. doi:10.​3189/​1727564077828715​12 CrossRef
    Hasselmann K (1998) Conventional and Bayesian approach to climate-change detection and attribution. Q J R Meteorol Soc 124(552):2541–2565. doi:10.​1002/​qj.​49712455202 CrossRef
    Hoelzle M, Chinn T, Stumm D, Paul F, Zemp M, Haeberli W (2007) The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and Southern Alps of New Zealand. Glob Planet Change 56:69–82. doi:10.​1016/​j.​gloplacha.​2006.​07.​001 CrossRef
    Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395(6705):881–884. doi:10.​1038/​27638 CrossRef
    Hoffert MI, Caldeira K, Benford G, Volk T, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2003) Planning for future energy resources—response. Science 300(5619):582–584. doi:10.​1126/​science.​300.​5619.​581b
    Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge
    Huber UM, Bugmann H, Reasoner MA (2005) Global change and mountain regions—a state of knowledge and overview. Kluwer, DordrechtCrossRef
    Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.​1126/​science.​269.​5224.​676 CrossRef
    Imhof P, Nesje A, Nussbaumer SU (2012) Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little Ice Age’ until the present: the influence of the North Atlantic Oscillation. The Holocene 22(2):235–247. doi:10.​1177/​0959683611414935​ CrossRef
    IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    Jóhannesson T (1997) The response of two Icelandic glaciers to climatic warming computed with a degree-day glacier mass-balance model coupled to a dynamic glacier model. J Glaciol 43:321–327
    Jóhannesson T, Sigurðsson O, Laumann T, Kennet M (1995) Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J Glaciol 41:345–358
    Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450. doi:10.​1002/​(SICI)1097-0088(19971115)17:​13<1433:​AID-JOC203>3.​0.​CO;2-P CrossRef
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.​1175/​1520-0477(1996)077<0437:​TNYRP>2.​0.​CO;2 CrossRef
    Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRef
    Krishnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z, Williford CE, Gadgil S, Surendran S (1999) Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285:1548–1550. doi:10.​1126/​science.​285.​5433.​1548 CrossRef
    Kuhn M, Dreiseitl E, Hofinger S, Markl G, Span N, Kaiser N (1999) Measurements and models of the mass balance of Hintereisferner. Geogr Ann 81A:659–670. doi:10.​1111/​1468-0459.​00094 CrossRef
    Landman WA, Goddard L (2002) Statistical recalibration of GCM forecasts over southern Africa using model output statistics. J Clim 15:2038–2055. doi:10.​1175/​1520-0442(2002)015<2038:​SROGFO>2.​0.​CO;2 CrossRef
    Laumann T, Reeh N (1993) Sensitivity to climate change of the mass balance of glaciers in southern Norway. J Glaciol 39:329–346
    Leroy S (1998) Detecting climate signals: some Bayesian aspects. J Clim 11:640–651. doi:10.​1175/​1520-0442(1998)011<0640:​DCSSBA>2.​0.​CO;2 CrossRef
    Löffler H (1988) Natural hazards and health risks from lakes. Int J Water Resour Dev 4(4):276–283. doi:10.​1080/​0790062880872240​2 CrossRef
    Marshall SJ (2006) Modelling glacier response to climate change. In: Knight PG (ed) Glacier science and environmental change. Blackwell, Oxford, pp 163–173CrossRef
    Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.​1175/​BAMS-88-9-1383 CrossRef
    Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26(11):1589–1600. doi:10.​1175/​1520-0450(1987)026<1589:​CVISCF>2.​0.​CO;2 CrossRef
    Min S, Hense A, Paeth H, Kwon WT (2004) A Bayesian decision method for climate change signal analysis. Meteorol Z 13(5):421–436. doi:10.​1127/​0941-2948/​2004/​0013-0421 CrossRef
    Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuurren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.​1038/​nature08823 CrossRef
    Nakicenovic N, Swart R (2000) Emissions scenarios. Cambridge University Press, Cambridge
    Nesje A (1989) Glacier-front variations at the outlet glaciers from Jostedalsbreen and climate in the Jostedalsbre region of western Norway in the period 1901–1980. Nor Geogr Tidsskr 43:3–17CrossRef
    Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. The Holocene 15(8):1245–1252. doi:10.​1191/​0959683605hl897r​r CrossRef
    Nesje A, Dahl SO (2003) The ‘Little Ice Age’—only temperature? The Holocene 13(1):139–145. doi:10.​1191/​0959683603hl603f​a CrossRef
    Nesje A, Jóhannesson T, Birks HJB (1995) Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. The Holocene 5:343–347. doi:10.​1177/​0959683695005003​10 CrossRef
    Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601. doi:10.​1002/​1099-1417(200009)15:​6<587:​AID-JQS533>3.​0.​CO;2-2 CrossRef
    Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008) Norwegian mountain glaciers in the past, present and future. Glob Planet Change 60:10–27. doi:10.​1016/​j.​gloplacha.​2006.​08.​004 CrossRef
    NOAA-CPC (2014) Northern Hemisphere teleconnection patterns. http://​www.​cpc.​noaa.​gov/​data/​teledoc/​telecontents . Accessed 18 Dec 2012
    Nordli Ø, Lie Ø, Nesje A, Dahl SO (2003) Spring–summer temperature reconstruction in western Norway 1734–2003: a data-synthesis approach. Int J Climatol 23:1821–1841. doi:10.​1002/​joc.​980 CrossRef
    Nordli Ø, Lie Ø, Nesje A, Benestad RE (2005) Glacier mass balance in southern Norway modelled by circulation indices and spring–summer temperatures AD 1781–2000. Geogr Ann 87A(3):431–445. doi:10.​1111/​j.​0435-3676.​2005.​00269.​x CrossRef
    Oerlemans J (1986) An attempt to simulate historic front variations of Nigardsbreen. Theor Appl Climatol 34:126–135. doi:10.​1007/​BF00867846 CrossRef
    Oerlemans J (1988) Simulation of historic glacier variations with a simple climate–glacier model. J Glaciol 34:333–341
    Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264:243–245. doi:10.​1126/​science.​264.​5156.​243 CrossRef
    Oerlemans J (1997) Aflowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Ann Glaciol 24:382–389
    Oerlemans J (2000) Holocene glacier fluctuations: is the current rate of retreat exceptional? Ann Glaciol 31:39–44. doi:10.​3189/​1727564007818202​46 CrossRef
    Oerlemans J (2001) Glaciers and climate change. Balkema, Rotterdam
    Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677. doi:10.​1126/​science.​1107046 CrossRef
    Østrem G, Brugman M (1991) Glacier mass balance measurements. A manual for field and office work. National Hydrology Research Institute, Scientific Report, No. 4. Environment Canada, N.H.R.I., Saskatoon and Norwegian Water Resources and Energy Directorate, Oslo
    Paeth H (2011) Postprocessing of simulated precipitation for impact research in West Africa. Part I: model output statistics for monthly data. Clim Dyn 36:1321–1336. doi:10.​1007/​s00382-010-0760-z CrossRef
    Paeth H, Hense A (2003) Seasonal forecast of sub-sahelian rainfall using cross-validated model output statistics. Meteorol Z 12:157–173. doi:10.​1127/​0941-2948/​2003/​0012-0157 CrossRef
    Paeth H, Girmes R, Menz G, Hense A (2006) Improving seasonal forecasting in the low-latitudes. Mon Weather Rev 134:1859–1879. doi:10.​1175/​MWR3149.​1 CrossRef
    Paeth H, Rauthe M, Min S (2008a) Multi-model Bayesian assessment of climate change in the northern annular mode. Glob Planet Change 60(3–4):193–206. doi:10.​1016/​j.​gloplacha.​2007.​02.​004 CrossRef
    Paeth H, Scholten A, Friedrichs P, Hense A (2008b) Uncertainties in climate change prediction: El Niño-Southern Oscillation and monsoons. Glob Planet Change 60:265–288. doi:10.​1016/​j.​gloplacha.​2007.​03.​002 CrossRef
    Paul F, Andreassen LM, Winsvold SH (2011) A new glacier inventory for Jostedalsbreen region, Norway, from Landsat scenes of 2006 and changes since 1966. Ann Glaciol 52:153–162. doi:10.​3189/​1727564117990961​69 CrossRef
    Pohjola VA, Rogers JC (1997a) Atmospheric circulation and variations in Scandinavian glacier mass balance. Quat Res 47:29–36. doi:10.​1006/​qres.​1996.​1859 CrossRef
    Pohjola VA, Rogers JC (1997b) Coupling between the atmospheric circulation and extremes of the mass balance of Storglaciären, northern Scandinavia. Ann Glaciol 24:229–233
    Radic V, Hock R (2006) Modelling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: a sensitivity study at Storglaciären, Sweden. J Geophys Res 111:F03003. doi:10.​1029/​2005JF000440
    Rasmussen LA, Andreassen LM, Conway H (2007) Reconstruction of mass balance of glaciers in southern Norway back to 1948. Ann Glaciol 46:255–260CrossRef
    Reichert BK, Bengtsson L, Oerlemans J (2001) Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. J Clim 15:3069–3081. doi:10.​1175/​1520-0442(2001)014<3767:​MFMFGM>2.​0.​CO;2 CrossRef
    Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253. doi:10.​1038/​nclimate1385 CrossRef
    Schneeberger C, Albrecht O, Blatter H, Wild M, Hock R (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study of Storglaciären, northern Sweden. Clim Dyn 17:825–834. doi:10.​1007/​s003820000147 CrossRef
    Schuler TV, Hock R, Jackson M, Elvehøy H, Braun M, Brown I, Hagen JO (2005) Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann Glaciol 42:395–401. doi:10.​3189/​1727564057818129​98 CrossRef
    Sivia DS, Skilling J (2006) Data analysis—a Bayesian tutorial. Oxford University Press, New York
    Six D, Reynaud L, Letréguilly A (2001) Bilans de masse des glaciers alpinsetscandinaves, leurs relations avec l’oscillation du climat de l’Atlantiquenord. Sciences de la Terre et des planètes/Earth Planet Sci 333:693–698. doi:10.​1016/​S1251-8050(01)01697-4
    SSB (2012) Electricity, annual figures, 2011. http://​www.​ssb.​no/​en/​elektrisitetaar/​ . Accessed 10 Apr 2013
    Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Clim 18:1524–1540. doi:10.​1175/​JCLI3363.​1 CrossRef
    Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.​1256/​qj.​04.​176 CrossRef
    Von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRef
    Washington R, Hodson A, Isaksson E, Macdonald O (2000) Northern hemisphere teleconnection indices and the mass balance of Svalbard glaciers. Int J Climatol 20:473–487. doi:10.​1002/​(SICI)1097-0088(200004)20:​5<473:​AID-JOC506>3.​0.​CO;2-O CrossRef
    Watson E, Luckman BH, Yu B (2006) Long-term relationship between reconstructed seasonal mass balance at Peyto Glacier, Canada, and Pacific sea surface temperatures. The Holocene 16:783–790. doi:10.​1191/​0959683606hol973​ft CrossRef
    WGMS (2008) Global glacier changes: facts and figures. World Glacier Monitoring Service, Zürich
    Wilks D (2006) Statistical methods in the atmospheric sciences. Elsevier Academic Press, Amsterdam
    Winkler S (1996) Front variations of outlet glaciers from Jostedalsbreen, western Norway, during the twentieth century. Nor Geol Unders Bull 431:33–47
    Winkler S, Nesje A (2009) Perturbation of climatic response at maritime glaciers? Erdkunde 63(3):229–244CrossRef
    Winkler S, Elvehøy H, Nesje A (2009) Glacier fluctuations of Jostedalsbreen, western Norway, during the past 20 years: the sensitive response of maritime mountain glaciers. The Holocene 19:395–414. doi:10.​1177/​0959683608101390​ CrossRef
    Winkler S, Chinn T, Gärtner-Roer I, Nussbaumer SU, Zemp M, Zumbühl HJ (2010) An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64:97–118. doi:10.​3112/​erdkunde.​2010.​02.​01 CrossRef
    Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504. doi:10.​1029/​2006GL026319 CrossRef
  • 作者单位:Sebastian Mutz (1)
    Heiko Paeth (2)
    Stefan Winkler (3)

    1. Department of Geosciences, University of Tübingen, Wilhelmstraße 56, 72076, Tübingen, Germany
    2. Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
    3. Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
The long-term behaviour of Norwegian glaciers is reflected by the long mass-balance records provided by the Norwegian Water Resources and Energy Directorate. These show positive annual mass balances in the 1980s and 1990s at maritime glaciers followed by rapid mass loss since 2000. This study assesses the influence of various atmospheric variables on mass changes of selected Norwegian glaciers by correlation- and cross-validated stepwise multiple regression analyses. The atmospheric variables are constructed from reanalyses by the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts. Transfer functions determined by the multiple regression are applied to predictors derived from a multi-model ensemble of climate projections to estimate future mass-balance changes until 2100. The statistical relationship to the North Atlantic Oscillation (NAO), the strongest predictor, is highest for maritime glaciers and less for more continental ones. The mass surplus in the 1980s and 1990s can be attributed to a strong NAO phase and lower air temperatures during the ablation season. The mass loss since 2000 can be explained by an increase of summer air temperatures and a slight weakening of the NAO. From 2000 to 2100 the statistical model predicts predicts changes for glaciers in more continental settings of c. −20 m w.e. (water equivalent) or 0.2 m w.e./a. The corresponding range for their more maritime counterparts is −0.5 to +0.2 m w.e./a. Results from Bayesian classification of observed atmospheric states associated with high melt or high accumulation in the past into different simulated climates in the future suggest that climatic conditions towards the end of the twenty-first century favour less winterly accumulation and more ablation in summer. The posterior probabilities for high accumulation at the end of the twenty-first century are typically 1.5–3 times lower than in the twentieth century while the posterior probabilities for high melt are often 1.5–3 times higher at the end of the twenty-first century than in the twentieth and early twenty-first century.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700