Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms
详细信息    查看全文
  • 作者:Sun Bok Lee ; Jeong Ah Kim ; Hyun Seung Lim
  • 关键词:3 ; 6 ; Anhydro ; D ; galactose ; Metabolic pathway ; 2 ; Keto ; 3 ; deoxy ; D ; galactonate ; Carrageenan ; Dan operon ; DeLey–Doudoroff pathway
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:100
  • 期:9
  • 页码:4109-4121
  • 全文大小:875 KB
  • 参考文献:Andberg M, Maaheimo H, Boer H, Penttilä M, Koivula A, Richard P (2012) Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of D-galactarolactone to 3-deoxy-2-keto-L-threo-hexarate. J Biol Chem 287:17662–17671CrossRef PubMed PubMedCentral
    Babbitt PC, Mrachko GT, Hasson MS, Huisman GW, Kolter R, Ringe D, Petsko GA, Kenyon GL, Gerlt JA (1995) A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science 267:1159–1161CrossRef PubMed
    Bae J, Kim SM, Lee SB (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19:469–478CrossRef PubMed
    Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343:563–570CrossRef PubMed PubMedCentral
    Cho SJ, Kim JA, Lee SB (2015) Identification and characterization of 3,6-anhydro-L-galactonate cyloisomerase belonging to the enolase superfamily. Biotechnol Bioprocess Eng 20:462–472CrossRef
    Cho SJ, Lee SB (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol Bioprocess Eng 19:1058–1068CrossRef
    Cole KM, Sheath RG (1990) Biology of the red algae. Cambridge University Press, New York
    Cooper RA (1978) The utilisation of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Biochemical and genetical studies. Arch Microbiol 118:199–206CrossRef PubMed
    De Ley J, Doudoroff M (1957) The metabolism of D-galactose in Pseudomonas saccharophila. J Biol Chem 227:745–757
    Ducatti DR, Massi A, Noseda MD, Duarte ME, Dondoni A (2009) Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org Biomol Chem 7:576–588CrossRef PubMed
    Duckworth M, Yaphe W (1970) Thin-layer chromatographic analysis of enzymic hydrolysates of agar. J Chromatogr 49:482–487CrossRef PubMed
    Entner N, Doudoroff M (1952) Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 196:853–862PubMed
    Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    Hargreaves PI, Barcelos CA, da Costa AC, Pereira N Jr (2013) Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 134:257–263CrossRef PubMed
    Haworth WN, Jackson J, Smith F (1940) The properties of 3:6-anhydrogalactose. J Chem Soc 620-632
    Hwang HJ, Lee SY, Kim SM, Lee SB (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol Bioproess Eng 16:1231–1239CrossRef
    Johansen JE, Nielsen P, Sjøholm C (1999) Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49:1231–1240CrossRef PubMed
    Jung JH, Lee SB (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-deoxy-D-gluconate kinase: a new class of sugar kinases. Biotechnol Bioprocess Eng 10:535–539CrossRef
    Jung JH, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138CrossRef PubMed PubMedCentral
    Kim S, Lee SB (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner–Doudoroff pathway. Biochem J 387:271–280CrossRef PubMed PubMedCentral
    Kim S, Lee SB (2006) Characterization of Sulfolobus solfataricus 2-keto-3-deoxy-D-gluconate kinase in the modified Entner-Doudoroff pathway. Biosci Biotechnol Biochem 70:1308–1316CrossRef PubMed
    Kim S, Lee SB (2008) Identification and characterization of the bacterial D-gluconate dehydratase in Achromobacter xylosoxidans. Biotechnol Bioprocess Eng 13:436–444CrossRef
    Kim SM, Paek KH, Lee SB (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16:447–454CrossRef PubMed
    Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156CrossRef PubMed
    Lee DH, Cho SJ, Kim SM, Lee SB (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:1528–1535CrossRef PubMed
    Lee SB (2015) Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnol Bioprocess Eng 20:714–717CrossRef
    Lee SB, Cho SJ, Kim JA, Lee SY, Kim SM, Lim HS (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol Bioprocess Eng 19:866–878CrossRef
    Lee SB, Lee SY, Lim HS (2015) Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. Biotechnol Bioprocess Eng 20:878–886CrossRef
    Meinita MDN, Kang J-Y, Jeong G-T, Koo HM, Park SM, Hong Y-K (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24:857–862CrossRef
    Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25:1957–1961CrossRef
    Michalska K, Cuff ME, Tesar C, Feldmann B, Joachimiak A (2011) Structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. Acta Crystallogr D Biol Crystallogr 67:678–689CrossRef PubMed PubMedCentral
    Miller DA, Suen G, Clements KD, Angert ER (2012) The genomic basis for the evolution of a novel form of cellular reproduction in the bacterium Epulopiscium. BMC Genomics 13:265CrossRef PubMed PubMedCentral
    Mutripah S, Meinita MDN, Kang J-Y, Jeong G-T, Susanto AB, Prabowo RE, Hong Y-K (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26:687–693CrossRef
    Noh M, Jung JH, Lee SB (2006) Purification and characterization of glycerate kinase from the thermoacidophilic archaeon Thermoplasma acidophium: an enzyme belonging to the second glycerate kinase family. Biotechnol Bioprocess Eng 11:344–350CrossRef
    O’Neill AN (1955a) 3,6-Anhydro-D-galactose as a constituent of κ-carrageenin. J Am Chem Soc 77:2837–2839CrossRef
    O’Neill AN (1955b) Derivatives of 4-0-β-D-galactopyranosyl-3,6-anhydro-D-galactose from κ-carrageenin. J Am Chem Soc 77:6324–6328CrossRef
    Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:93–88CrossRef
    Skoza L, Mohos S (1976) Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J 159:457–462CrossRef PubMed PubMedCentral
    Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333:863–882CrossRef PubMed
    Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ (2008) Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg Med Chem 16:710–720CrossRef PubMed PubMedCentral
    Wilson CA, Kreychman J, Gerstein M (2000) Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 297:233–249CrossRef PubMed
    Yaphe W (1957) The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can J Microbiol 3:987–993CrossRef PubMed
    Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH (2015) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17:1677–1688CrossRef PubMed
  • 作者单位:Sun Bok Lee (1) (2)
    Jeong Ah Kim (1)
    Hyun Seung Lim (1)

    1. Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, South Korea
    2. Graduate School of Engineering Mastership, Pohang University of Science and Technology, Pohang, 790-784, South Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey–Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700