AA9 and AA10: from enigmatic to essential enzymes
详细信息    查看全文
  • 作者:Thamy Lívia Ribeiro Corrêa…
  • 关键词:Biomass ; Saccharification ; Second ; generation ethanol ; AA9 ; AA10 ; Glycoside hydrolase
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:1
  • 页码:9-16
  • 全文大小:493 KB
  • 参考文献:Aachmann FL, Sørlie M, Skjak-Braek G, Eijsink VGH, Vaaje-Kolstad G (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci 109:18779–18784. doi:10.​1073/​pnas.​1208822109 PubMed PubMedCentral CrossRef
    Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, Horn SJ, Eijsink VGH, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci 111:6287–6292. doi:10.​1073/​pnas.​1323629111 PubMed PubMedCentral CrossRef
    Arfi Y, Shamshouma M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci 111:9109–9114. doi:10.​1073/​pnas.​1404148111 PubMed PubMedCentral CrossRef
    Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips Jr GN, Fox BG (2014) Evolution of substrate specificity in bacterial AA10 lytic polyssacharide monooxygenases. Biotechnol Biofuels 7:109. doi:10.​1186/​1754-6834-7-109 PubMed PubMedCentral CrossRef
    Busk PK, Lange L (2013) Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl Environ Microbiol 79:3380–3391. doi:10.​1128/​AEM.​03803-12 PubMed PubMedCentral CrossRef
    Busk PK, Lange L (2015) Classification of fungal and bacterial lytic polysaccharide monooxigenases. BMC Genomics 16:368. doi:10.​1186/​s12864-015-1601-6 PubMed PubMedCentral CrossRef
    Canella D, Hsieh CC, Felby C, Jørgensen (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26. doi:10.​1186/​1754-6834-5-26 CrossRef
    Cota J, Corrêa TLR, Damásio ARL, Diogo JA, Hoffmam ZB, Garcia W, Oliveira LC, Prade RA, Squina FM (2015) Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnol 32:13–20. doi:10.​1016/​j.​nbt.​2014.​07.​009 CrossRef
    Desai SH, Rabinovitch-Deere CA, Fan Z, Atsumi S (2015) Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Factories 14:52. doi:10.​1186/​s12934-015-0232-6 CrossRef
    Dimaragona M, Topakas E, Christakopoulos P (2012a) Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J 2:e201209015. doi:10.​5936/​csbj.​201209015
    Dimaragona M, Topakas E, Olsson L, Christakopoulos P (2012b) Lignin boosts the cellulase performance of a GH61 enzyme from Sporotrichum thermophile. Biores Technol 110:480–487. doi:10.​1016/​j.​biortech.​2012.​01.​116 CrossRef
    Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289:35929–35938. doi:10.​1074/​jbc.​M114.​602227 PubMed PubMedCentral CrossRef
    Forsberg Z, Vaage-Kolstad G, Westereng B, Bunӕs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink GH (2011) Cleavage of cellulose by a CBM33 protein. Science 20:1479–1483. doi:10.​1002/​pro.​689
    Forsberg Z, Røhr ÅK, Mekasha S, Anderson KK, Eijsink VGH, Vaaje-Kolstad G, Sørlie M (2014) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.​1021/​bi5000433 PubMed CrossRef
    Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SWA, Koetsier MJ, van Berkel WJH, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:10. doi:10.​1186/​s13068-015-0284-1 CrossRef
    Ghatge SS, Telke AA, Waghmode TR, Lee Y, Lee K-W, Oh D-B, Shin HD, Kim S-W (2015) Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Appl Microbiol Biotechnol 99:3041–3055. doi:10.​1007/​s00253-014-6116-6 PubMed CrossRef
    Harris PV, Welner D, McFarland KC, Re E, Poulsen J-C N, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glucoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3478. doi:10.​1021/​bi100009p PubMed CrossRef
    Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077. doi:10.​1021/​ja402106e PubMed PubMedCentral CrossRef
    Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.​1038/​nchembio.​1417 PubMed PubMedCentral CrossRef
    Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. doi:10.​1186/​1754-6834-5-45 PubMed PubMedCentral CrossRef
    Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315. doi:10.​1039/​c4ee00891j CrossRef
    Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VGH, Horn SJ (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642. doi:10.​1074/​jbc.​M113.​530196 PubMed PubMedCentral CrossRef
    Jung S, Song Y, Kim HM, Bae H-J (2015) Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum. Enzyme Microb Tech 77:38–45. doi:10.​1016/​j.​enzmictec.​2015.​05.​006 CrossRef
    Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 a resolution. J Mol Biol 383:144–154. doi:10.​1016/​j.​jmb.​2008.​08.​016 PubMed CrossRef
    Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Pentillä M, Tjernelf F (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507. doi:10.​1046/​j.​0014-2956.​2001.​02605.​x PubMed CrossRef
    Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci 111:149–154. doi:10.​1073/​pnas.​1316609111 PubMed PubMedCentral CrossRef
    Kim IJ, Nam KH, Yun EJ, Kim S, Youn HJ, Lee HJ, Choi IG, Kim KH (2015) Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Appl Microbiol Biotechnol. doi:10.​1007/​s00253-015-6592-3
    Koseki T, Mese Y, Fushinobu S, Masaki K, Fujii T, Ito K, Shiono Y, Murayama T, Iefuji H (2008) Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol 77:1279–1285. doi:10.​1007/​s00253-007-1274-4 PubMed CrossRef
    Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015. doi:10.​1128/​AEM.​05815-11 PubMed PubMedCentral CrossRef
    Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.​1186/​1754-6834-6-41 PubMed PubMedCentral CrossRef
    Li X, Beeson WT, Phillips CM, Marlleta MA, Cate JHD (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061. doi:10.​1016/​j.​str.​2012.​04.​002 PubMed PubMedCentral CrossRef
    Li X, Chomvong K, Yu VY, Liang JM, Lin Y, Cate JHD (2015) Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae. Biotechnol Biofuels 8:120. doi:10.​1186/​s13068-015-0303-2 PubMed PubMedCentral CrossRef
    Lo Leggio L, Weiner D, De Maria L (2012) A structural overview of GH61 proteins—fungal cellulose degrading polysaccharide monooxygenases. Comput Struct Biotechnol J e201209019. doi:10.5936/csbj.201209019
    Lo Leggio L, Simmons TJ, Poulsen J-CN, Frandsen KEH, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong C-L, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH (2014) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961. doi:10.​1038/​ncomms6961 CrossRef
    Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar based ethanol process. Biotechnol Biofuels 5:22. doi:10.​1186/​1754-6834-5-22 PubMed PubMedCentral CrossRef
    Mba MF, Davies GJ, Drancourt M, Henrissat B (2012) Genome analysis highlight the different biological roles of cellulases. Nature Rev Microbiol 10:227–234. doi:10.​1038/​nrmicro2729 CrossRef
    Morgenstern I, Powlowski J, Tsang A (2014) Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genomics 13:471–481. doi:10.​1093/​bfgp/​elu032 PubMed PubMedCentral CrossRef
    Moser F, Irwin D, Chen S, Wilson DB (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077. doi:10.​1002/​bit.​21856 PubMed CrossRef
    Novozymes (2012) Hydrolysis of biomass—cellulases. http://​bioenergy.​novozymes.​com/​Documents/​Hyd_​PR_​Cellulases.​pdf . Accessed 12 Mar 2015
    Novozymes (2013) Biomass conversion—driving commercialization. http://​www.​novozymes.​com/​en/​investor/​events-presentations/​Documents/​NZCMD_​05_​SBSQ+CCF_​Biomass%20​Conversion_​FINAL%20​TO%20​UPLOAD.​pdf . Accessed 12 Mar 2015
    Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modification as raw materials for biofuels. Plant J 54:559–568. doi:10.​1111/​j.​1365-313X.​2008.​03463.​x PubMed CrossRef
    Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158:58–68. doi:10.​1099/​mic.​0.​054031-0 PubMed CrossRef
    Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and cooper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406. doi:10.​1021/​cb200351y PubMed CrossRef
    Poidevin L, Berrin J-G, Bennati-Granier C, Levasseur A, Herpoël-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E (2014) Comparative analysis of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98:7457–7469. doi:10.​1007/​s00253-014-5698-3 PubMed CrossRef
    Rodríguez-Zuñiga UF, Canella D, Giordano RC, Giordano RLC, Jørgensen H, Felby C (2015) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem 17:2896–2903. doi:10.​1039/​C4GC02179G CrossRef
    Sun FF, Hong J, Hu J, Saddler JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme Microb Tech 79–80:42–48. doi:10.​1016/​j.​enzmictec.​2015.​06.​020 CrossRef
    Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG (2013) Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Nature 3:1–10. doi:10.​1038/​srep01030
    Tanghe M, Daneels B, Camattari A, Glieder A, Vandenberghe I, Devreese B, Stals I, Desmet T (2015) Recombinant expression of Trichoderma reesei Cel61A in Pichia pastoris: optimizing yield and N-terminal processing. Mol Biotechnol. doi:10.​1007/​s12033-015-9887-9 PubMed
    Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci 106:22157–22162. doi:10.​1073/​pnas.​0906810106 PubMed PubMedCentral CrossRef
    Vaaje-Kolstad G, Houston DR, Riemen AHK, Eijsink VGH, van Aalten DMF (2005) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319. doi:10.​1074/​jbc.​M407175200 PubMed CrossRef
    Vaaje-Kolstad G, Bjørge W, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.​1126/​science.​1192231 PubMed CrossRef
    Vaaje-Kolstad G, Bøhle LV, Gåseidnes S, Dalhus B, Bjøras M, Mathiesen G, Eijsink VGH (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM enzyme. J Mol Biol 416:239–254. doi:10.​1016/​j.​jmb.​2011.​12.​033 PubMed CrossRef
    Vermaas JV, Crowley MF, Beckham GT, Payne CM (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 119:6129–6143. doi:10.​1021/​acs.​jpcb.​5b00778 PubMed CrossRef
    Vu VV, Beeson WT, Span EA, Farguhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci 111:13822–13827. doi:10.​1073/​pnas.​1408090111 PubMed PubMedCentral CrossRef
    Wang B, Cai P, Sun W, Li J, Tian C, Ma Y (2015) A transcriptomic analysis of Neurospora crassa using five major crop residues and the novel role of the sporulation regulator rca-1 in lignocellulase production. Biotechnol Biofuels 8:21. doi:10.​1186/​s13068-015-0208-0 PubMed PubMedCentral CrossRef
    Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7119PubMed PubMedCentral
    Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren (2011) The putative endoglucanase PcGH61d from Phanaerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:e27807. doi:10.​1371/​journal.​pone.​0027807 PubMed PubMedCentral CrossRef
    Whitaker J (1994) Principles of enzymology for food sciences. Marcel Dekker Inc, New York
    Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919. doi:10.​1016/​j.​biotechadv.​2012.​01.​020 PubMed CrossRef
  • 作者单位:Thamy Lívia Ribeiro Corrêa (1)
    Leandro Vieira dos Santos (1)
    Gonçalo Amarante Guimarães Pereira (1)

    1. Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, CEP 13083-970, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
The lignocellulosic biomass, comprised mainly of cellulose, hemicellulose, and lignin, is a strong competitor for petroleum to obtain fuels and other products because of its renewable nature, low cost, and non-competitiveness with food production when obtained from agricultural waste. Due to its recalcitrance, lignocellulosic material requires an arsenal of enzymes for its deconstruction and the consequent release of fermentable sugars. In this context, enzymes currently classified as auxiliary activity 9 (AA9/formerly GH61) and 10 (AA10/formerly CBM 33) or lytic polysaccharide monooxygenases (LPMO) have emerged as cellulase boosting enzymes. AA9 and AA10 are the new paradigm for deconstruction of lignocellulosic biomass by enhancing the activity and decreasing the loading of classical enzymes to the reaction and, consequently, reducing costs of the hydrolysis step in the second-generation ethanol production chain. In view of that disclosed above, the goal of this work is to review experimental data that supports the relevance of AA9 and AA10 for the biomass deconstruction field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700