Poly(Ethylene Glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells
详细信息    查看全文
  • 作者:Erica B. Peters ; Nicolas Christoforou…
  • 关键词:Vascularization ; Tissue engineering ; Endothelial progenitor cells ; Biomaterials ; Hydrogels
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:38-54
  • 全文大小:11,903 KB
  • 参考文献:1.Abdallah, B. M., M. Haack-Sørensen, J. S. Burns, B. Elsnab, F. Jakob, P. Hokland, and M. Kassem. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem. Biophys. Res. Commun. 326:527–538, 2005.CrossRef
    2.Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–478, 2007.CrossRef
    3.Anagnostakis, I., A. C. Papassavas, E. Michalopoulos, T. Chatzistamatiou, S. Andriopoulou, A. Tsakris, and C. Stavropoulos-Giokas. Successful short-term cryopreservation of volume-reduced cord blood units in a cryogenic mechanical freezer: effects on cell recovery, viability, and clonogenic potential. Transfusion 54:211–223, 2014.CrossRef
    4.Armulik, A., G. Genové, and C. Betsholtz. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21:193–215, 2011.CrossRef
    5.Bahney, C. S., T. J. Lujan, C. W. Hsu, M. Bottlang, J. L. West, and B. Johnstone. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsibe hydrogels. Eur. Cell Mater. 22:43–55, 2011.
    6.Belvisi, L., T. Riccioni, M. Marcellini, L. Vesci, I. Chiarucci, D. Efrati, D. Potenza, C. Scolastico, L. Manzoni, K. Lombardo, M. A. Stasi, A. Orlandi, A. Ciucci, B. Nico, D. Ribatti, G. Giannini, M. Presta, P. Carminati, and C. Pisano. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol. Cancer Ther. 4:1670–1680, 2005.CrossRef
    7.Bompais, H., J. Chagraoui, X. Canron, M. Crisan, X. H. Liu, A. Anjo, C. Tolla-Le Port, M. Leboeuf, P. Charbord, A. Bikfalvi, and G. Uzan. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584, 2004.CrossRef
    8.Carmeliet, P. Angiogenesis in life, disease, and medicine. Nature 438:932–936, 2005.CrossRef
    9.Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. A 15:1363–1371, 2009.CrossRef
    10.Chwalek, K., M. V. Tsurkan, U. Freudenberg, and C. Werner. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci. Rep. 4:4414, 2014.CrossRef
    11.Culver, J. C., J. C. Hoffman, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24:2344–2348, 2012.CrossRef
    12.Dejana, E., F. Orsenigo, and M. G. Lampugnani. The role of adherens junctions and VE-cadherin in control of vascular permeability. J. Cell Sci. 121(Pt 13):2115–2122, 2008.CrossRef
    13.Eapen, M., J. P. Klein, A. Ruggeri, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical blood transplantation for hematologic malignancy. Blood 123:133–140, 2014.CrossRef
    14.Eming, S. A., and J. A. Hubbell. Extracellular matrix in angiogenesis: dynamic structures with translational potential. Exp. Dermatol. 20:605–613, 2011.CrossRef
    15.Evensen, L., D. R. Micklem, A. Blois, S. V. Berge, N. Aarsaether, A. Littlewood-Evans, J. Wood, and J. B. Lorens. Mural cell associated VEGF is required for organotypic vessel formation. PLoS ONE 4:e5798, 2009.CrossRef
    16.Fang, J. S., C. Dai, D. T. Kurjiaka, J. M. Burt, and K. K. Hirschi. Connexin45 regulates endothelial-induced mesenchymal cell differentiation toward a mural cell phenotype. Arterioscler. Thromb. Vasc. Biol. 33:362–368, 2013.CrossRef
    17.Gill, B. J., D. L. Gibbons, L. C. Roudsari, J. E. Saik, Z. H. Rizvi, J. D. Roybal, J. M. Kurie, and J. L. West. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72:6013–6023, 2012.CrossRef
    18.Hahn, M. S., L. J. Tate, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.CrossRef
    19.Hanjaya-Putra, D., V. Bose, Y. I. Shen, J. Yee, S. Khetan, K. Fox-Talbot, C. Steenbergen, J. A. Burdick, and S. Gerecht. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–815, 2011.CrossRef
    20.Haug, V., N. Torio-Padron, G. B. Stark, G. Finkenzeller, and S. Strassburg. Comparison between endothelial progenitor cells and human umbilical vein endothelial cells on neovascularization in an adipogenesis mouse model. Microvasc. Res. 97:159–166, 2015.CrossRef
    21.Herbert, S. P., and D. Y. Stainier. Molecular control of endothelial cell behavior during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12:551–564, 2011.CrossRef
    22.Hirschi, K. K., J. M. Burt, K. D. Hirschi, and C. Dai. Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ. Res. 93:429–437, 2003.CrossRef
    23.Hirschi, K. K., S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D’Amore. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84:298–305, 1999.CrossRef
    24.Hotchkiss, K. A., A. W. Ashton, R. Mahmood, R. G. Russell, J. A. Sparano, and E. L. Schwartz. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol. Cancer Ther. 1:1191–1200, 2002.
    25.Hynes, R. O. Cell–matrix adhesion in vascular development. J. Thromb. Haemost. 5(Supplement 1):32–40, 2007.CrossRef
    26.Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760, 2004.CrossRef
    27.Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9:685–693, 2003.CrossRef
    28.Kawabe, J., and N. Hasebe. Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. Biomed. Res. Int. 2014. doi:10.​1155/​2014/​701571 .
    29.Kirkpatrick, C. J., S. Fuchs, and R. E. Unger. Co-culture systems for vascularization—learning from nature. Adv. Drug Deliv. Rev. 63:291–299, 2011.CrossRef
    30.Koehler, K. C., D. L. Alge, K. S. Anseth, and C. N. Bowman. A Diels–Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. Biomaterials 34:4150–4158, 2013.CrossRef
    31.Korff, T., S. Kimmina, G. Martiny-Baron, and H. G. August. Blood vessel maturation in a 3-dimensional spheroidal co-culture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457, 2001.CrossRef
    32.Kut, C., F. Mac Gabhann, and A. S. Popel. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 97:978–985, 2007.CrossRef
    33.Leong, M. F., J. K. Toh, C. Du, K. Narayanan, H. F. Lu, T. C. Lim, A. C. Wan, and J. Y. Ying. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4:2353, 2013.CrossRef
    34.Lutolf, M. P., J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, and J. A. Hubbell. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 100:5413–5418, 2003.CrossRef
    35.Marturano, J. E., J. D. Arena, Z. A. Schiller, I. Georgakoudi, and C. K. Kuo. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc. Natl. Acad. Sci. USA 110:6370–6375, 2013.CrossRef
    36.Melero-Martin, J. M., Z. A. Khan, A. Picard, X. Wu, S. Paruchuri, and J. Bischoff. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768, 2007.CrossRef
    37.Minuth, W. W., R. Strehl, and K. Schumacher. Tissue Engineering. Essentials for Daily Laboratory Work. Weinheim: Wiley-VCH Verlag, 2005.CrossRef
    38.Moon, J. J., J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. Lee, A. A. Smith, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847, 2010.CrossRef
    39.Morais, J. M., F. Papadimitrakopoulos, and D. J. Burgess. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12:188–196, 2010.CrossRef
    40.Nagase, H., and G. B. Fields. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416, 1996.CrossRef
    41.Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.CrossRef
    42.Okamoto, T., N. Akita, E. Kawamoto, T. Hayashi, K. Suzuki, and M. Shimaoka. Endothelial connexin32 enhances angiogenesis by positively regulating tube formation and cell migration. Exp. Cell Res. 321:133–141, 2014.CrossRef
    43.Okamoto, T., M. Akiyama, M. Takeda, E. C. Gabazza, T. Hayashi, and K. Suzuki. Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem. Biophys. Res. Commun. 382:264–268, 2009.CrossRef
    44.Peters, E. B., N. Christoforou, K. W. Leong, and G. A. Truskey. Comparison of mixed and lamellar co-culture spatial arrangements for tissue engineering capillary networks in vitro. Tissue Eng. A 19:697–706, 2013.CrossRef
    45.Peters, E. B., N. Christoforou, E. Moore, J. L. West, and G. A. Truskey. CD45+ cells present within mesenchymal stem cell populations affect network formation of blood-derived endothelial outgrowth cells. Biores. Open Access 4(1):75–88, 2015. doi:10.​1089/​biores.​2014.​0029 .CrossRef
    46.Peters, E. B., B. Liu, N. Christoforou, J. L. West, and G. A. Truskey. Umbilical cord blood-derived mononuclear cells exhibit pericyte-like phenotype and support network formation of endothelial progenitor cells in vitro. Ann. Biomed. Eng. 2015. doi:10.​1007/​s10439-015-1301-z .
    47.Phelps, E. A., N. Landázuri, P. M. Thulé, W. R. Taylor, and A. J. García. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. USA 107:3323–3328, 2010.CrossRef
    48.Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. Cell 146:873–887, 2011.CrossRef
    49.Rao, R. R., A. W. Peterson, J. Ceccarelli, A. J. Putnam, and J. P. Stegemann. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15:253–264, 2012.CrossRef
    50.Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.CrossRef
    51.Saik, J. E., D. J. Gould, A. H. Keswani, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis. Biomacromolecules 12:2715–2722, 2011.CrossRef
    52.Seeto, W. J., Y. Tian, and E. A. Lipke. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells. Acta Biomater. 9:8279–8289, 2013.CrossRef
    53.Sekine, H., T. Shimizu, K. Hobo, S. Sekiya, J. Yang, M. Yamato, H. Kurosawa, E. Kobayashi, and T. Okano. Endothelial cell co-culture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:S145–S152, 2008.CrossRef
    54.Senger, D. R. Molecular framework for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am. J. Pathol. 149:1–7, 1996.
    55.Senger, D. R., and G. E. Davis. Angiogenesis. Cold Spring Harb. Perspect. Biol. 3:a005090, 2011.CrossRef
    56.Stupack, D. G., and D. A. Cheresh. Integrins and angiogenesis. Curr. Top. Dev. Biol. 64:207–238, 2004.CrossRef
    57.Tremblay, P. L., V. Hudon, F. Berthod, L. Germain, and F. A. Auger. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 5:1002–1010, 2005.CrossRef
    58.Turturro, M. V., M. C. Christenson, J. C. Larson, D. A. Young, E. M. Brey, and G. Papavasiliou. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS 8:e58897, 2013.CrossRef
    59.Tziros, C., and J. E. Freedman. The many antithrombotic actions of nitric oxide. Curr. Drug Targets 7:1243–1251, 2006.CrossRef
    60.Unger, R. E., S. Ghanaati, C. Orth, A. Sartoris, M. Barbeck, S. Halstenberg, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with co-cultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31:6959–6967, 2010.CrossRef
    61.Vigen, M., J. Ceccareli, and A. J. Putnam. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol. Biosci. 14:1368–1379, 2014.CrossRef
    62.Welti, J., S. Loges, S. Dimmeler, and P. Carmeliet. Recent molecular discoveries in angiogenesis and antiangiognic therapies in cancer. J. Clin. Invest. 123:3190–3200, 2013.CrossRef
    63.Wu, X., E. Rabkin-Aikawa, K. J. Guleserian, T. E. Perry, Y. Masuda, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and J. Bischoff. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287:H480–H487, 2004.CrossRef
    64.Yang, J., U. Nagavarapu, K. Relloma, M. D. Sjaastad, W. C. Moss, A. Passaniti, and G. S. Herron. Telomerized human microvasculature is functional in vivo. Nat. Biotechnol. 19:219–224, 2001.CrossRef
    65.Yoder, M. C. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2:a006692, 2012.CrossRef
    66.Yoder, M. C. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J. Mol. Med. (Berl). 91:285–295, 2013.CrossRef
    67.Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809, 2007.CrossRef
  • 作者单位:Erica B. Peters (1)
    Nicolas Christoforou (2)
    Kam W. Leong (3)
    George A. Truskey (1)
    Jennifer L. West (1)

    1. Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Durham, NC, 27708, USA
    2. Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
    3. Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, Mail Code 8904, New York, NY, 10027, USA
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Mechanics
    Continuum Mechanics and Mechanics of Materials
    Biophysics and Biomedical Physics
    Cell Biology
  • 出版者:Springer New York
  • ISSN:1865-5033
文摘
The development of stable, functional microvessels remains an important obstacle to overcome for tissue engineered organs and treatment of ischemia. Endothelial progenitor cells (EPCs) are a promising cell source for vascular tissue engineering as they are readily obtainable and carry the potential to differentiate towards all endothelial phenotypes. The aim of this study was to investigate the ability of human umbilical cord blood-derived EPCs to form vessel-like structures within a tissue engineering scaffold material, a cell-adhesive and proteolytically degradable polyethylene glycol hydrogel. EPCs in co-culture with angiogenic mural cells were encapsulated in hydrogel scaffolds by mixing with polymeric precursors and using a mild photocrosslinking process to form hydrogels with homogeneously dispersed cells. EPCs formed 3D microvessels networks that were stable for at least 30 days in culture, without the need for supplemental angiogenic growth factors. These 3D EPC microvessels displayed aspects of physiological microvasculature with lumen formation, expression of endothelial cell proteins (connexin 32, VE-cadherin, eNOS), basement membrane formation with collagen IV and laminin, perivascular investment of PDGFR-β and α-SMA positive cells, and EPC quiescence (<1% proliferating cells) by 2 weeks of co-culture. Our findings demonstrate the development of a novel, reductionist system that is well-defined and reproducible for studying progenitor cell-driven microvessel formation. Keywords Vascularization Tissue engineering Endothelial progenitor cells Biomaterials Hydrogels

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700