One- and two-soliton solutions to a new KdV evolution equation with nonlinear and nonlocal terms for the water wave problem
详细信息    查看全文
  • 作者:M. Fokou ; T. C. Kofane ; A. Mohamadou ; E. Yomba
  • 关键词:Higher ; order KdV equation ; Soliton solutions ; Water wave problem ; Hirota’s bilinear method
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:83
  • 期:4
  • 页码:2461-2473
  • 全文大小:1,510 KB
  • 参考文献:1.Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)CrossRef
    2.Porsezian, K., Nakkeeran, K.: Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 76, 3955 (1996)CrossRef
    3.Mihalache, D., Truta, N., Crasovan, L.C.: Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term. Phys. Rev. E 56, 1064 (1997)CrossRef
    4.Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448 (1997)CrossRef
    5.Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media. Phys. Rev. E 60, 3314 (1999)CrossRef
    6.Gatz, S., Hermann, J.: Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17, 484 (1992)CrossRef
    7.Yanay, H., Khaykovich, L., Malomed, B.A.: Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation. Chaos 19, 033145 (2009)CrossRef
    8.Chen, Y., Beckwitt, K., Wise, F., Aitken, B., Sanghera, J., Aggarwall, I.D.J.: Measurement of fifth- and seventh-order nonlinearities of glasses. Opt. Soc. Am. B. 23, 347 (2006)CrossRef
    9.Mohamadou, A., Latchio, Tiofack, C.G., Kofané, T.C.: Wave train generation of solitons in systems with higher-order nonlinearities. Phys. Rev. E 82, 016601 (2010)CrossRef
    10.Nguenang, J.P., Kofané, T.C.: Solitary waves in spin chains with biquadratic exchange and dipole–dipole interactions. Phys. Scr. 55, 367 (1997)CrossRef
    11.Pushkarov, D.I., Pushkarov, KhI: Solitary magnons in one-dimensional ferromagnetic chain. Phys. Lett. A 61, 339 (1977)CrossRef
    12.Shi, Z.P., Huang, G., Tao, R.: Solitonlike excitations in a spin chain with a biquadratic anisotropic exchange interaction. Phys. Rev. B 42, 747 (1990)CrossRef
    13.Ursell, F.: The long-wave paradox in the theory of gravity waves. Proc. Camb. Philos. Soc. 49, 685 (1953)CrossRef
    14.Ndohi, R., Kofané, T.C.: Solitary waves in a ferromagnetic chains near the marginal state of instability. Phys. Lett. A 154, 377 (1991)CrossRef
    15.Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. Ser. A 369, 105 (1979)CrossRef
    16.Aspe, H., Depassier, M.C.: Evolution equation of surface waves in a convecting fluid. Phys. Rev. A 41, 6 (1990)CrossRef
    17.Guo, xiang, H., Velarde, M.G.: Dispersion-modified Burgers description for nonlinear surface wave excitations in Bénard–Marangoni convection. Commun. Theor. Phys. 34, 321 (2000)CrossRef
    18.Dullin, H.R., Gottwald, G.A., Holm, D.D.: Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73 (2003)CrossRef
    19.Burde, G.I.: Solitary wave solutions of the high-order KdV models for bi-directional water waves. Commun. Nonlinear Sci. Numer. Simul. 16, 1314 (2011)CrossRef
    20.Burde, G.I., Sergyeyev, A.: Ordering of two small parameters in the shallow water wave problem. J. Phys. A Math. Theor. 46, 075501 (2013)CrossRef
    21.Karczewska, A., Rozmej, P., Infeld, E.: Shallow-water soliton dynamics beyond the Korteweg–de Vries equation. Phys. Rev. E 90, 012907 (2014)CrossRef
    22.Pelap, F.B., Kofané, T.C.: The revised modulational instability criterion: I. The mono-inductance transmission line. Phys. Scr. 57, 410 (1998)CrossRef
    23.Yemélé, D., Marqui, P., Bilbault, J.M.: Long-time dynamics of modulated waves in a nonlinear discrete LC transmission line. Phys. Rev. E 68, 016605 (2003)CrossRef
    24.Kliakhandler, I.L., Porulov, A.V., Velarde, M.G.: Localized finite-amplitude disturbances and selection of solitary waves. Phys. Rev. E 62, 4 (2000)CrossRef
    25.Depassier, M.C., Letelier, J.A.: Fifth order evolution equation for long wave dissipative solitons. Phys. Lett. A 376, 452 (2012)CrossRef
    26.Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)
    27.Fokas, As: On a class of physically important integrable equations. Phys. D 87, 145 (1995)CrossRef
    28.Wazwaz, A.M.: The Hirotas direct method and the tanhcoth method for multiple-soliton solutions of the SawadaKoteraIto seventh-order equation. Appl. Math. Comput. 199, 133 (2008)CrossRef
    29.Martinez, J.J.: An introduction to the Hirota bilinear method. Department of Mathematics, Kobe University, Rokko
    30.Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirotas bilinear method and by the tanhcoth method. Appl. Math. Comput. 190, 633 (2007)CrossRef
    31.Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)CrossRef
    32.Wadati, M.: Wave propagation in nonlinear lattice I. J. Phys. Soc. Jpn. 38, 673 (1975)CrossRef
    33.Yajima, T., Wadati, M.: The Rayleigh–Taylor instability and nonlinear waves. J. Phys. Soc. Jpn. 59, 3182 (1990)CrossRef
    34.Yajima, T., Wadati, M.: The Rayleigh–Taylor instability and nonlinear waves. J. Phys. Soc. Jpn. 59, 48 (1990)CrossRef
    35.El-Kalaawy, O.H.: Exact soliton solutions for some nonlinear partial differential equations. Chaos Solitons Fractals 14, 547 (2002)CrossRef
    36.Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288 (1996)CrossRef
    37.Parkes, E.J., Duffy, B.R.: Travelling solitary wave solutions to a compound KdV-Burgers equation. Phys. Lett. A 229, 217 (1997)
    38.Khater, A.H., Malfliet, W., Callebaut, D.K., Kamel, E.S.: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations. Chaos Solitons Fractals 14, 513 (2002)CrossRef
    39.Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212 (2000)CrossRef
    40.Fan, E.: Travelling wave solutions for two generalized Hirota–Satsuma coupled KdV systems. Z. Naturforsch. A 56, 312 (2001)CrossRef
    41.Elwakil, S.A., El-labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299, 179 (2002)CrossRef
    42.Gao, Y.T., Tian, B.: Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics. Comput. Phys. Commun. 133, 158 (2001)CrossRef
    43.Tian, B., Gao, Y.T.: Observable solitonic features of the generalized reaction duffing mode. Z. Naturforsch. A 57, 39 (2002)CrossRef
    44.Tian, B., Zhao, K., Gao, Y.T.: Symbolic computation in engineering: application to a breaking soliton equation. Int. J. Eng. 35, 1081 (1997)CrossRef
    45.Al-Mdallal, Q.M., Syam, M.I.: SineCosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation. Chaos Soliton Fractals 33, 1610 (2007)CrossRef
    46.Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499 (2004)CrossRef
    47.Wazwaz, A.M.: The sinecosine method for obtaining solutions with compact and non compact structures. Appl. Math. Comput. 159, 559 (2004)CrossRef
    48.Yusufoglu, E., Bekir, A.: Solitons and periodic solutions of coupled nonlinear evolution equations by using the sinecosine method. Int. J. Comput. 83, 915 (2006)CrossRef
    49.Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563 (1996)CrossRef
    50.Wazwaz, A.M.: The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 154, 1196 (2005)
    51.Wazwaz, A.M.: The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon equation. Appl. Math. Comput. 167, 1179 (2005)CrossRef
    52.Wazwaz, A.M.: The tanhcoth and the sinecosine methods for kinks, solitons, and periodic solutions for the Pochhammer–Chree equations. Appl. Math. Comput. 195, 24 (2008)CrossRef
    53.Hereman, W., Zhuang, W.: Symbolic Computation of Solitons Via Hirotas Bilinear Method. Department of Mathematics and Computer Science, Colorado School of Mines, Golden, Colorado (1994)
  • 作者单位:M. Fokou (1) (2)
    T. C. Kofane (1) (2)
    A. Mohamadou (2) (3)
    E. Yomba (4)

    1. Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
    2. Centre d’Excellence Africain en Technologies de l’Information et de la Communication, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
    3. Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
    4. Department of Mathematics, California State University-Northridge, Northridge, CA, 91330-8313, USA
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
With the help of the Boussinesq perturbation expansion, a new basic equation describing the long, small-amplitude, unidirectional wave motion in shallow water with surface tension is derived to fourth order, namely a higher-order Korteweg–de Vries (KdV) equation. The procedure for deriving this equation assumes that the relation between the small parameter \(\alpha \), which measures the ratio of wave amplitude to undisturbed fluid depth, and the small parameter \(\beta \), which measures the square of the ratio of fluid depth to wave length, is taken in the form \(\beta = 0(\alpha ) = \varepsilon \), where \(\varepsilon \) is a small, dimensionless parameter which is the order of the amplitude of the motion. Hirota’s bilinear method is used to investigate one- and two-soliton solutions for this new higher-order KdV equation. Keywords Higher-order KdV equation Soliton solutions Water wave problem Hirota’s bilinear method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700