Optimization reformulations of the generalized Nash equilibrium problem using regularized indicator Nikaid?–Isoda function
详细信息    查看全文
  • 作者:C. S. Lalitha ; Mansi Dhingra
  • 关键词:Generalized Nash equilibrium problem ; Regularized indicator Nikaid?–Isoda function ; Optimization reformulations ; Normalized Nash equilibria ; Quasi ; variational inequality problem ; 90C30 ; 91A10
  • 刊名:Journal of Global Optimization
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:57
  • 期:3
  • 页码:843-861
  • 全文大小:433KB
  • 参考文献:1. Bensoussan A.: Points de Nash dans le cas de fontionnelles quadratiques et jeux differentiels linéaires à à N personnes. SIAM J. Control 12, 460-99 (1974) CrossRef
    2. Contreras J., Klusch M., Krawczyk J.B.: Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195-06 (2004). doi:10.1109/TPWRS.2003.820692 CrossRef
    3. Facchinei F., Kanzow C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177-11 (2010). doi:10.1007/s10479-009-0653-x CrossRef
    4. Fl?am, S.D., Ruszczyński, A.: Noncooperative convex games: computing equilibria by partial regularization, IIASA, Laxenburg, Working Paper 94-42 (1994)
    5. Fukushima M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99-10 (1992). doi:10.1007/BF01585696 CrossRef
    6. Gabay, D., Moulin, H.: On the uniqueness and stability of Nash-equilibria in noncooperative games, Applied stochastic control in econometrics and management science, pp. 271-93, Contrib. Econ. Anal., 130, North-Holland, Amsterdam (1980)
    7. Gürkan G., Pang J.-S.: Approximations of Nash equilibria. Math. Program. 117, 223-53 (2007). doi:10.1007/s10107-007-0156-y CrossRef
    8. Harker P.T.: Alternative models of spatial competition. Oper. Res. 34, 410-25 (1986). doi:10.1287/opre.34.3.410 CrossRef
    9. Harker P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81-4 (1991). doi:10.1016/0377-2217(91)90325-P CrossRef
    10. Huang X.X., Yang X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533-52 (2003). doi:10.1287/moor.28.3.533.16395 CrossRef
    11. Jofré A., Wets R.J.-B.: Continuity properties of Walras equilibrium points. Stochastic equilibrium problems in economics and game theory. Ann. Oper. Res. 114, 229-43 (2002). doi:10.1023/A:1021022522035 CrossRef
    12. Lalitha C.S.: A new augmented Lagrangian approach to duality and exact penalization. J. Global Optim. 46, 233-45 (2010). doi:10.1007/s10898-00909420-4 CrossRef
    13. Leyffer S., Munson T.: Solving multi-leader-common-follower games. Optim. Methods Softw. 25, 601-23 (2010). doi:10.1080/10556780903448052 CrossRef
    14. Lions J.-L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493-19 (1967). doi:10.1002/cpa.3160200302 CrossRef
    15. Mastroeni G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411-26 (2003). doi:10.1023/A:1026050425030 CrossRef
    16. Nikaid? H., Isoda K.: Note on noncooperative convex games. Pac. J. Math. 5, 807-15 (1955) CrossRef
    17. Rockafellar R.T.: Augmented Lagrangian multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268-85 (1974). doi:10.1137/0312021 CrossRef
    18. Steor J., Bulirsch R.: Introduction to Numerical Analysis, Third Edition, Springer, Texts in Applied Mathematics, 12. Springer, New York (2002)
    19. Uryasev S., Rubinstein R.Y.: On relaxation algorithms in computation of noncooperative equilibria. IEEE Trans. Automat. Control 39, 1263-267 (1994). doi:10.1109/9.293193 CrossRef
    20. von Heusinger A., Kanzow C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaid?–Isoda-type functions. Comput. Optim. Appl. 43, 353-77 (2009). doi:10.1007/s10589-007-9145-6 CrossRef
  • 作者单位:C. S. Lalitha (1)
    Mansi Dhingra (2)

    1. Department of Mathematics, University of Delhi South Campus, Benito Jaurez Road, New Delhi, 110021, India
    2. Department of Mathematics, University of Delhi, Delhi, 110007, India
  • ISSN:1573-2916
文摘
In this paper, we extend the literature by adapting the Nikaid?–Isoda function as an indicator function termed as regularized indicator Nikaid?–Isoda function, and this is demonstrated to guarantee existence of a solution. Using this function, we present two constrained optimization reformulations of the generalized Nash equilibrium problem (GNEP for short). The first reformulation characterizes all the solutions of GNEP as global minima of the optimization problem. Later this approach is modified to obtain the second optimization reformulation whose global minima characterize the normalized Nash equilibria. Some numerical results are also included to illustrate the behaviour of the optimization reformulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700