The de Rham homotopy theory and differential graded category
详细信息    查看全文
  • 作者:Syunji Moriya (1) moriyasy@math.kyoto-u.ac.jp
  • 关键词:Rational homotopy theory – Non ; simply connected space – Dg ; category – Schematic homotopy type
  • 刊名:Mathematische Zeitschrift
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:271
  • 期:3-4
  • 页码:961-1010
  • 全文大小:622.9 KB
  • 参考文献:1. Quillen D.: Homotopical Algebra, Lecture Notes in Mathematics. Springer, Berlin (1967)
    2. Hochschild G., Mostow G.D.: Pro-affine algebraic groups. Am. J. Math. 91, 1127–1140 (1969)
    3. Mac Lane S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5. Springer, Berlin (1971)
    4. Sullivan D.: Geometric Topology, Part I; Localization, Periodicity, and Galois symmetry, Revised version. MIT Press, Cambridge (1970)
    5. Bousfield A.K., Kan D.M.: Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, vol. 304. Springer, Berlin (1972)
    6. Bousfield A.K., Gugenheim V.K.A.M.: On PL de Rham theory and rational homotopy type, Memoirs of the American Mathematical Society, vol. 179. American Mathematical Society, Providence (1976)
    7. Vigué-Poirrier M., Sullivan D.: The homology theory of the closed geodesic problem. J. Differ. Geom. 11(4), 633–644 (1976)
    8. Sullivan D.: Infinitesimal computations in topology. Inst. Hautes études Sci. Publ. Math. 47, 269–331 (1977)
    9. Whitehead G.W.: Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, pp. xxi+744. Springer, Berlin (1978)
    10. Griffiths P., Morgan J.: Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 16, pp. xi+242. Birkh?user, Boston (1981)
    11. Deligne P., Milne J.S.: Tannakian categories. In: Dold, A., Eckmann, B. (eds) Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, pp. 101–228. Springer, Berlin (1982)
    12. Simpson C.: Higgs bundles and local systems. Inst. Hautes études Sci. Publ. Math. 75, 5–95 (1992)
    13. Brown E.H., Szczarba R.H.: On the rational homotopy type of function spaces. Trans. Am. Math. Soc. 349, 4931–4951 (1997)
    14. Hovey M.: Model Categories, Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)
    15. Goerss P., Jardine J.: Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, pp. xvi+510. Birkh?user Verlag, Basel (1999)
    16. Gómez-Tato A., Halperin S., Tanré D.: Rational homotopy theory for non-simply connected spaces. Trans. Am. Math. Soc. 352(4), 1493–1525 (2000)
    17. Félix Y., Halperin S., Thomas J.: Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205, pp. xxxiv+535. Springer, New York (2001)
    18. Blander B.: Local projective model structures on simplicial presheaves. K-Theory 24(3), 283–301 (2001)
    19. Dugger D., Hollander S., Isaksen D.: Hypercovers and simplicial presheaves. Math. Proc. Cambridge Philos. Soc. 136(1), 9–51 (2004)
    20. Cisinski D.-C.: Les préfaisceaux comme modèles des types d’homotopie. Astérisque 308, xxiv+390 (2006)
    21. Jardine J.: Categorical homotopy theory. Homol. Homotopy Appl. 8(1), 71–144 (2006)
    22. To?n B.: Champs affines. Selecta Math. (N.S.) 12(1), 39–135 (2006)
    23. To?n B., Vezzosi G.: Homotopical algebraic geometry. Mem. Am. Math. Soc. 193(902), pp. x+224 (2008)
    24. Katzarkov L., Pantev T., T?en B.: Schematic homotopy types and non-abelian Hodge theory. Compos. Math. 144(3), 582–632 (2008)
    25. Katzarkov L., Pantev T., To?n B.: Algebraic and topological aspects of the schmematization functor. Compos. Math. 145(3), 633–686 (2009)
    26. Pridham J.P.: The pro-unipotent radical of the pro-algebraic fundamental algebraic fundamental group of a compact K?hler manifold. Ann. Fac. Sci. Toulouse Math. (6) 16(1), 147–178 (2007)
    27. Pridham J.P.: Pro-algebraic homotopy types. Proc. Lond. Math. Soc. (3) 97(2), 273–338 (2008)
    28. Pridham, J.P.: Non-abelian real Hodge theory for proper varieties. arXiv:math/0611686 (preprint)
    29. Pridham, J.P.: Formality and splitting of real non-abelian mixed Hodge structures. arXiv:math/0902.0770 (preprint)
    30. Moriya S.: Rational homotopy theory and differential graded category. J. Pure Appl. Algebra 214(4), 422–439 (2010)
  • 作者单位:1. Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502 Japan
  • ISSN:1432-1823
文摘
This paper is a generalization of Moriya (in J Pure Appl Algebra 214(4): 422–439, 2010). We develop the de Rham homotopy theory of not necessarily nilpotent spaces. We use two algebraic objects: closed dg-categories and equivariant dg-algebras. We see these two objects correspond in a certain way (Proposition 3.3.4, Theorem 3.4.5). We prove an equivalence between the homotopy category of schematic homotopy types (To?n in Selecta Math (N.S.), 12(1):39–135, 2006) and a homotopy category of closed dg-categories (Theorem 1.0.1). We give a description of homotopy invariants of spaces in terms of minimal models (Theorem 1.0.2). The minimal model in this context behaves much like the Sullivan’s minimal model. We also provide some examples. We prove an equivalence between fiberwise rationalizations (Bousfield and Kan in Lecture Notes in Mathematics, vol 304. Springer, Berlin, 1972) and closed dg-categories with subsidiary data (Theorem 1.0.4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700