Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity
详细信息    查看全文
文摘
We experimentally investigated phase relations and phase compositions as well as the influence of water activity (aH2O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO2 = 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content (T ~950 °C; melt H2O < 1.5 wt%) at redox conditions slightly below the quartz–fayalite–magnetite buffer. The relatively low water content is remarkable, because distinct hydrothermal influence is generally regarded as key for producing silica-rich rocks in an oceanic environment. However, our conclusion is also supported by mineral and melt chemistry of natural evolved rocks; these rocks are only congruent to the composition of those experimental phases that are produced under low aH2O. Low FeO contents under water-saturated conditions and the characteristic enrichment of Al2O3 in high aH2O experiments, in particular, contradict natural observations, while experiments with low aH2O match the natural trend. Moreover, the observation that highly evolved experimental melts remain H2O-poor while they are relatively enriched in chlorine implies a decoupling between these two volatiles during crustal contamination.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700