Novel Molecular Targets of Azadirachta indica Associated with Inhibition of Tumor Growth in Prostate Cancer
详细信息    查看全文
  • 作者:Saswati Mahapatra (1)
    R. Jeffrey Karnes (1)
    Michael W. Holmes (2)
    Charles Y. F. Young (1)
    John C. Cheville (3)
    Manish Kohli (1)
    Eric W. Klee (4)
    Donald J. Tindall (1)
    Krishna Vanaja Donkena (1)
  • 关键词:gene expression profiles ; neem leaf extract ; therapeutic targets and prostate cancer ; tumor models
  • 刊名:The AAPS Journal
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:13
  • 期:3
  • 页码:365-377
  • 全文大小:909KB
  • 参考文献:1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277-00. CrossRef
    2. Fang LC, Merrick GS, Wallner KE. Androgen deprivation therapy: a survival benefit or detriment in men with high-risk prostate cancer? Oncology (Williston Park). 2010;24:790-. 8.
    3. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371:1710-1. CrossRef
    4. Hotte SJ, Saad F. Current management of castrate-resistant prostate cancer. Curr Oncol. 2010;17 Suppl 2:S72-.
    5. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, / et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008;9:581-1. CrossRef
    6. Goto T, Takahashi N, Hirai S, Kawada T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res. 2010;2010:483958.
    7. Gajria D, Seidman A, Dang C. Adjuvant taxanes: more to the story. Clin Breast Cancer. 2010;10 Suppl 2:S41-. CrossRef
    8. Bose A, Chakraborty K, Sarkar K, Goswami S, Haque E, Chakraborty T, / et al. Neem leaf glycoprotein directs T-bet-associated type 1 immune commitment. Hum Immunol. 2009;70:6-5. CrossRef
    9. Sarkar K, Bose A, Haque E, Chakraborty K, Chakraborty T, Goswami S, / et al. Induction of type 1 cytokines during neem leaf glycoprotein assisted carcinoembryonic antigen vaccination is associated with nitric oxide production. Int Immunopharmacol. 2009;9:753-0. CrossRef
    10. Manikandan P, Anandan R, Nagini S. Evaluation of / Azadirachta indica leaf fractions for / in vitro antioxidant potential and protective effects against H2O2-induced oxidative damage to pBR322 DNA and red blood cells. J Agric Food Chem. 2009;57:6990-. CrossRef
    11. Anyaehie UB. Medicinal properties of fractionated acetone/water neem [ / Azadirachta indica] leaf extract from Nigeria: a review. Niger J Physiol Sci. 2009;24:157-.
    12. Priyadarsini RV, Manikandan P, Kumar GH, Nagini S. The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis. Free Radic Res. 2009;43:492-04. CrossRef
    13. Chakraborty K, Bose A, Pal S, Sarkar K, Goswami S, Ghosh D, / et al. Neem leaf glycoprotein restores the impaired chemotactic activity of peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients by maintaining CXCR3/CXCL10 balance. Int Immunopharmacol. 2008;8:330-0. CrossRef
    14. Haque E, Mandal I, Pal S, Baral R. Prophylactic dose of neem ( / Azadirachta indica) leaf preparation restricting murine tumor growth is nontoxic, hematostimulatory and immunostimulatory. Immunopharmacol Immunotoxicol. 2006;28:33-0. CrossRef
    15. Bose A, Chakraborty K, Sarkar K, Goswami S, Chakraborty T, Pal S, / et al. Neem leaf glycoprotein induces perforin-mediated tumor cell killing by T and NK cells through differential regulation of IFNgamma signaling. J Immunother. 2009;32:42-3. CrossRef
    16. Vanaja DK, Grossmann ME, Cheville JC, Gazi MH, Gong A, Zhang JS, / et al. PDLIM4, an actin binding protein, suppresses prostate cancer cell growth. Cancer Invest. 2009;27:264-2. CrossRef
    17. Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM, / et al. PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res. 2006;12:1128-6. CrossRef
    18. Vanaja DK, Cheville JC, Iturria SJ, Young CY. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 2003;63:3877-2.
    19. Gong A, He M, Krishna Vanaja D, Yin P, Karnes RJ, Young CY. Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells. Mol Nutr Food Res. 2009;53:878-6. CrossRef
    20. Kulle AE, Riepe FG, Melchior D, Hiort O, Holterhus PM. A novel ultrapressure liquid chromatography tandem mass spectrometry method for the simultaneous determination of androstenedione, testosterone, and dihydrotestosterone in pediatric blood samples: age- and sex-specific reference data. J Clin Endocrinol Metab. 2010;95:2399-09. CrossRef
    21. Wegiel B, Evans S, Hellsten R, Otterbein LE, Bjartell A, Persson JL. Molecular pathways in the progression of hormone-independent and metastatic prostate cancer. Curr Cancer Drug Targets. 2010;10:392-01. CrossRef
    22. Mitchell MJ, Smith SL, Johnson S, Morgan ED. Effects of the neem tree compounds azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase activity. Arch Insect Biochem Physiol. 1997;35:199-09. CrossRef
    23. Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, / et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 2001;61:7388-3.
    24. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, / et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1:203-. CrossRef
    25. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49-4. CrossRef
    26. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, / et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007;39:41-1. CrossRef
    27. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, / et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1-.
    28. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24:449-5. CrossRef
    29. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med. 2008;86:267-9. CrossRef
    30. Bussolati B, Mason JC. Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid Redox Signal. 2006;8:1153-3. CrossRef
    31. Dulak J, Deshane J, Jozkowicz A, Agarwal A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation. 2008;117:231-1. CrossRef
    32. Prawan A, Kundu JK, Surh YJ. Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid Redox Signal. 2005;7:1688-03. CrossRef
    33. Was H, Cichon T, Smolarczyk R, Rudnicka D, Stopa M, Chevalier C, / et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol. 2006;169:2181-8. CrossRef
    34. Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, / et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res. 2009;7:1745-5. CrossRef
    35. Buchan NC, Goldenberg SL. Intermittent androgen suppression for prostate cancer. Nat Rev Urol. 2010;7:552-0. CrossRef
    36. Quon H, Loblaw DA. Androgen deprivation therapy for prostate cancer—review of indications in 2010. Curr Oncol. 2010;17 Suppl 2:S38-4.
    37. Nishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res. 2004;10:7121-. CrossRef
    38. Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol. 2007;47:263-2. CrossRef
    39. Ji Q, Chang L, VanDenBerg D, Stanczyk FZ, Stolz A. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate. 2003;54:275-9. CrossRef
    40. Ji Q, Chang L, Stanczyk FZ, Ookhtens M, Sherrod A, Stolz A. Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. Cancer Res. 2007;67:1361-. CrossRef
    41. Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A, / et al. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res. 2005;65:5445-3. CrossRef
    42. Heringlake S, Hofdmann M, Fiebeler A, Manns MP, Schmiegel W, Tannapfel A. Identification and expression analysis of the aldo-ketoreductase1-B10 gene in primary malignant liver tumours. J Hepatol. 2009;52:220-. CrossRef
    43. Negri-Cesi P, Colciago A, Poletti A, Motta M. 5alpha-reductase isozymes and aromatase are differentially expressed and active in the androgen-independent human prostate cancer cell lines DU145 and PC3. Prostate. 1999;41:224-2. CrossRef
    44. Okano K, Yamamoto J, Kosuge T, Yamamoto S, Sakamoto M, Nakanishi Y, / et al. Fibrous pseudocapsule of metastatic liver tumors from colorectal carcinoma. Clinicopathologic study of 152 first resection cases. Cancer. 2000;89:267-5. CrossRef
    45. Yamamoto J, Shimada K, Kosuge T, Yamasaki S, Sakamoto M, Fukuda H. Factors influencing survival of patients undergoing hepatectomy for colorectal metastases. Br J Surg. 1999;86:332-. CrossRef
    46. Kumar S, Suresh PK, Vijayababu MR, Arunkumar A, Arunakaran J. Anticancer effects of ethanolic neem leaf extract on prostate cancer cell line (PC-3). J Ethnopharmacol. 2006;105:246-0. CrossRef
    47. Subapriya R, Kumaraguruparan R, Nagini S. Expression of PCNA, cytokeratin, Bcl-2 and p53 during chemoprevention of hamster buccal pouch carcinogenesis by ethanolic neem ( / Azadirachta indica) leaf extract. Clin Biochem. 2006;39:1080-. CrossRef
    48. Subapriya R, Bhuvaneswari V, Ramesh V, Nagini S. Ethanolic leaf extract of neem ( / Azadirachta indica) inhibits buccal pouch carcinogenesis in hamsters. Cell Biochem Funct. 2005;23:229-8. CrossRef
    49. Subapriya R, Velmurugan B, Nagini S. Modulation of xenobiotic-metabolizing enzymes by ethanolic neem leaf extract during hamster buccal pouch carcinogenesis. J Exp Clin Cancer Res. 2005;24:223-0.
    50. Chattopadhyay RR. Possible biochemical mode of anti-inflammatory action of / Azadirachta indica A. Juss. in rats. Indian J Exp Biol. 1998;36:418-0.
  • 作者单位:Saswati Mahapatra (1)
    R. Jeffrey Karnes (1)
    Michael W. Holmes (2)
    Charles Y. F. Young (1)
    John C. Cheville (3)
    Manish Kohli (1)
    Eric W. Klee (4)
    Donald J. Tindall (1)
    Krishna Vanaja Donkena (1)

    1. Department of Urology and Biochemistry/Molecular Biology, Mayo Clinic/Foundation, Guggenheim 5-01B, 200 First Street SW, Rochester, Minnesota, 55905, USA
    2. Proteomics Research Center, Mayo Clinic, Rochester, Minnesota, USA
    3. Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
    4. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
  • ISSN:1550-7416
文摘
Advanced prostate cancer has significant long-term morbidity, and there is a growing interest in alternative and complimentary forms of therapy that will improve the outcomes of patients. Azadirachta indica (common name: neem) contains multiple active compounds that have potent anti-inflammatory and anticancer properties. The present study investigates the novel targets of the anticancer activity of ethanol extract of neem leaves (EENL) in vitro and evaluates the in vivo efficacy in the prostate cancer models. Analysis of the components in the EENL by mass spectrometry suggests the presence of 2-3-dehydrosalannol, 6-desacetyl nimbinene, and nimolinone. Treatment of C4-2B and PC-3M-luc2 prostate cancer cells with EENL inhibited the cell proliferation. Genome-wide expression profiling, using oligonucleotide microarrays, revealed genes differentially expressed with EENL treatment in prostate cancer cells. Functional analysis unveiled that most of the up-regulated genes were associated with cell death, and drug metabolism, and the down-regulated genes were associated with cell cycle, DNA replication, recombination, and repair functions. Quantitative PCR confirmed significant up-regulation of 40 genes and immunoblotting revealed increase in the protein expression levels of HMOX1, AKR1C2, AKR1C3, and AKR1B10. EENL treatment inhibited the growth of C4-2B and PC-3M-luc2 prostate cancer xenografts in nude mice. The suppression of tumor growth is associated with the formation of hyalinized fibrous tumor tissue and the induction of cell death by apoptosis. These results suggest that EENL-containing natural bioactive compounds could have potent anticancer property and the regulation of multiple cellular pathways could exert pleiotrophic effects in prevention and treatment of prostate cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700