Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: the effect of the electrostatic embedding scheme
详细信息    查看全文
  • 作者:Davide Presti ; Alfonso Pedone ; Ilaria Ciofini…
  • 关键词:ESIPT fluorophores ; Molecular crystals ; TD ; DFT ; ONIOM ; Electrostatic embedding
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:135
  • 期:4
  • 全文大小:1,435 KB
  • 参考文献:1.Singer KD, Lalama SL, Sohn JE, Small RD (1987) Chapter II-8: electro-optic organic materials. In: Zyss J, Chemla DS (eds) Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, pp 437–468CrossRef
    2.Ramamurthy V (1991) Photochemistry in organized and constrained media. Wiley-VCH, New York
    3.Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds. Plenum Press, New York
    4.Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716. doi:10.​1021/​cr980069d CrossRef
    5.Dürr H, Bouas-Laurent H (2003) Photochromism: molecules and systems, 2nd edn. Elsevier, Amsterdam
    6.Sakai K, Kawamura H, Kobayashi N et al (2014) Highly efficient solid-state red fluorophores using ESIPT: crystal packing and fluorescence properties of alkoxy-substituted dibenzothiazolylphenols. CrystEngComm 16:3180–3185. doi:10.​1039/​C3CE42109K CrossRef
    7.Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55–70. doi:10.​2307/​3571331 CrossRef
    8.Presti D, Labat F, Pedone A et al (2014) Computational protocol for modeling thermochromic molecular crystals: salicylidene aniline as a case study. J Chem Theory Comput 10:5577–5585. doi:10.​1021/​ct500868s CrossRef
    9.Mutai T, Satou H, Araki K (2005) Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687. doi:10.​1038/​nmat1454 CrossRef
    10.Harada J, Fujiwara T, Ogawa K (2007) Crucial role of fluorescence in the solid-state thermochromism of salicylideneanilines. J Am Chem Soc 129:16216–16221. doi:10.​1021/​ja076635g CrossRef
    11.Chung JW, You Y, Huh HS et al (2009) Shear- and UV-induced fluorescence switching in stilbenic π-dimer crystals powered by reversible [2 + 2] cycloaddition. J Am Chem Soc 131:8163–8172. doi:10.​1021/​ja900803d CrossRef
    12.Hongo K, Watson MA, Sánchez-Carrera RS et al (2010) Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study. J Phys Chem Lett 1:1789–1794. doi:10.​1021/​jz100418p CrossRef
    13.Pedone A, Presti D, Menziani MC (2012) On the ability of periodic dispersion-corrected DFT calculations to predict molecular crystal polymorphism in para-diiodobenzene. Chem Phys Lett 541:12–15. doi:10.​1016/​j.​cplett.​2012.​05.​049 CrossRef
    14.Kronik L, Tkatchenko A (2014) Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc Chem Res 47:3208–3216. doi:10.​1021/​ar500144s CrossRef
    15.Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.​1002/​jcc.​20495 CrossRef
    16.Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410. doi:10.​1039/​b715018k CrossRef
    17.Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: a Multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. a test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. doi:10.​1021/​jp962071j CrossRef
    18.Vreven T, Morokuma K (2000) The ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) method for the first singlet excited (S1) state photoisomerization path of a retinal protonated Schiff base. J Chem Phys 113:2969–2975. doi:10.​1063/​1.​1287059 CrossRef
    19.Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.​1021/​j100096a001 CrossRef
    20.Dovesi R, Orlando R, Civalleri B et al (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Krist 220:571–573. doi:10.​1524/​zkri.​220.​5.​571.​65065
    21.Dovesi R, Saunders VR, Roetti C et al (2010) CRYSTAL09 user’s manual. Università di Torino, Torino
    22.Presti D, Pedone A, Menziani MC et al (2014) Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation. CrystEngComm 16:102–109. doi:10.​1039/​c3ce41758a CrossRef
    23.Presti D, Pedone A, Menziani MC (2014) Unraveling the polymorphism of [(p-cymene)Ru(κN-INA)Cl2] through dispersion-corrected DFT and NMR GIPAW calculations. Inorg Chem 53:7926–7935. doi:10.​1021/​ic5006743 CrossRef
    24.Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. doi:10.​1007/​BF00533485 CrossRef
    25.Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the Becke–Lee–Yang–Parr (B-LYP) density functional theory with various basis sets. Chem Phys Lett 197:499–505. doi:10.​1016/​0009-2614(92)85807-M CrossRef
    26.Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi:10.​1002/​jcc.​10189 CrossRef
    27.Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Parandekar PV, Mayhall NJ, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN09, Revision D.01. Wallingford, Gaussian
    28.Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840. doi:10.​1063/​1.​1740588 CrossRef
    29.Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8:527–541. doi:10.​1021/​ct200866d CrossRef
    30.Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.​1021/​j100142a004 CrossRef
    31.Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. doi:10.​1002/​jcc.​540050204 CrossRef
    32.Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. doi:10.​1021/​j100161a070 CrossRef
    33.Martin F, Zipse H (2005) Charge distribution in the water molecule: a comparison of methods. J Comput Chem 26:97–105. doi:10.​1002/​jcc.​20157 CrossRef
  • 作者单位:Davide Presti (1)
    Alfonso Pedone (1)
    Ilaria Ciofini (2)
    Frédéric Labat (2)
    Maria Cristina Menziani (1)
    Carlo Adamo (2) (3)

    1. Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio-Emilia, via G. Campi 103, 41125, Modena, Italy
    2. PSL Research University, Institut de Recherche de Chimie Paris, CNRS Chimie ParisTech, 11 rue P. et M. Curie, 75005, Paris, France
    3. Institut Universitaire de France, 103 Boulevard Saint Michel, 75005, Paris, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
Periodic density functional theory (DFT) and hybrid ONIOM time-dependent DFT/MM cluster calculations have been carried out to investigate the ground- and excited-state properties of the crystalline structures of the enolic and ketonic tautomeric forms of a propoxy-substituted dibenzothiazolylphenol molecule (OPr), a prototype for systems undergoing the excited-state intramolecular proton transfer process. The crystalline structures of the tautomeric forms are well reproduced and, as expected, at the ground state, the enol polymorph is predicted to be more stable than the keto one. At the excited state, the effect of the environment on time-dependent DFT calculations has been accounted for by including a charge embedding scheme, and the influence of different kinds of point charges (Mulliken, CM5, RESP and Q Eq) in determining the optical properties of the central molecule has been investigated. The results reveal that, in fair agreement with experimental data, the absorption (emission) energies of the enol (keto) OPr molecule is red-shifted of about 3 (3) nm going from the gas phase to chloroform and blue-shifted of 10 (23) nm going from the gas to the crystal phase when the electronic embedding with Mulliken charges is employed. The electrostatic embedding influences the excited-state properties more severely than the ground-state properties, and apart the Q Eq charges, all other models provide Stokes shifts in reasonable agreement with experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700