The Use of Ultrasound to Measure Dislocation Density
详细信息    查看全文
  • 作者:Felipe Barra ; Rodrigo Espinoza-González ; Henry Fernández ; Fernando Lund…
  • 刊名:JOM Journal of the Minerals, Metals and Materials Society
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:67
  • 期:8
  • 页码:1856-1863
  • 全文大小:683 KB
  • 参考文献:1.D. Hull and D. J. Bacon, Introduction to Dislocations, 5th edition (Elsevier, 2011).r>2.G. Xu, Dislocations in Solids, eds. F.R.N. Nabarro and J.P. Hirth, vol. 12 (Elsevier, 2004).r>3.U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts (Wiley, 2007)r>4.G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007).r>5.S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).View Article r>6.S.J. Zinkle and Y. Matsukawa, J. Nucl. Mater. 329-33, 88 (2004).View Article r>7.H. Wang, D.S. Xu, and R. Yang, Model. Simul. Mater. Sci Eng. 22, 085004 (2014).View Article r>8.J. Co?r, P.Y. Manach, H. Laurent, M.C. Oliveira, and L.F. Menezes, Mech. Res. Commun. 48, 1 (2013)View Article r>9.A. Yilmaz, Sci. Technol. Adv. Mater. 12, 063001 (16pp) (2011).r>10.A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).MathSciNet View Article MATH r>11.M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner, Int. J. Plasticity 26, 925 (2010).View Article MATH r>12.H.S. Leung, P.S.S. Leung, B. Cheng, and A.H.W. Ngan, Int. J. Plasticity 67, 1 (2015).View Article r>13.D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2nd Ed. (Springer, Berlin, 2009), Ch. 27.r>14.F.A. Ponce, R. Sinclair, and R.H. Rube, Appl. Phys. Lett. 39, 951 (1981).View Article r>15.F.A. Ponce, T. Yamashita, and S. Hahn, Appl. Phys. Lett. 43, 1051 (1983).View Article r>16.P.E. Batson, N. Dellby, and O.L. Krivanek, Nature 418, 617 (2002).View Article r>17.S. Yamada and T. Sakai, Microscopy 63, 449 (2014).View Article r>18.N. Li, J. Wang, X. Zhang, and A. Misra, J. Miner. Met. Mater. Soc. 63, 62 (2011).r>19.R.K. Ham, Philos. Mag. 6, 1183 (1961).View Article r>20.B. D. Cullity, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, 2001).r>21.T. Ungár, Appl. Phys. Lett. 69, 3173 (1996).View Article r>22.G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).View Article r>23.T. Ungár and A. Borbély, Appl. Phys. Lett. 69, 3173 (1996).View Article r>24.T. Ungár, I. Dragomir, ?. Révész, and A. Borbély, J. Appl. Cryst. 32, 992 (1999).View Article r>25.T. Ungár and G. Tichy, Phys. Stat. Sol. A 171, 425 (1999).View Article r>26.M. R. Movaghar Garabagh, S. Hossein Nedjad, H. Shirazi, M. Iranpour Mobarekeh, and M. Nili Ahmadabadi, Thin Solid Films 516, 8117 (2008).r>27.T. Ungár, Mater. Sci. Eng. A 309-10, 14 (2001).View Article r>28.F.R.N. Nabarro, Proc. R. Soc. Lond. Ser. A 209, 278 (1951).MathSciNet View Article r>29.J.D. Eshelby, Proc. R. Soc. London, Ser. A 197, 396 (1949).View Article r>30.J.D. Eshelby, Phys. Rev. 90, 248 (1953)MathSciNet View Article MATH r>31.T. Mura, Philos. Mag. 8, 843 (1963).View Article r>32.F. Lund, J. Mater. Res. 3, 280 (1988).View Article MATH r>33.A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).View Article MATH r>34.A. Granato and K. Lücke, J. Appl. Phys. 27, 789 (1956).View Article r>35.G.A. Kneezel and A.V. Granato, Phys. Rev. B 25, 2851 (1982).View Article r>36.A. Maurel, J.-F. Mercier, and F. Lund, J. Acoust. Soc. Am. 115, 2773 (2004).View Article r>37.A. Maurel, J.-F. Mercier, and F. Lund, Phys. Rev. B 70, 024303 (2004).View Article r>38.A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Mater. Sci. Eng. A 400-01, 222 (2005).View Article r>39.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174110 (2005).View Article r>40.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174111 (2005).View Article r>41.A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Proc. R. Soc. Lond. A 462, 2607 (2006).MathSciNet View Article r>42.A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Acoust. Soc. Am. 121, 3418 (2007).View Article r>43.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 75, 224112 (2007).View Article r>44.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Int. J. Bifurc. Chaos 19, 2765 (2009).View Article r>45.N. Rodríguez, A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Appl. Phys. 106, 054910 (2009).View Article r>46.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 80, 136102 (2009).View Article r>47.A. Maurel, V. Pagneux, F. Barra, and F. Lund, Ultrasonics 50, 161 (2010).View Article MATH r>48.H.M. Ledbetter and C. Fortunko, J. Mater. Res. 10, 1352 (1995).View Article r>49.H. Ogi, H.M. Ledbetter, S. Kim, and M. Hirao, J. Acoust. Soc. Am. 106, 660 (1999).View Article MATH r>50.H. Ogi, N. Nakamura, M. Hirao, and H. Ledbetter, Ultrasonics 42, 183 (2004).View Article MATH r>51.N. Mujica, M.T. Cerda, R. Espinoza, J. Lisoni, and F. Lund, Acta Mater. 60, 5828 (2012).View Article r>52.A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997).r>53.L. D. Landau and I. M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1970).r>54.R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley,
  • 作者单位:Felipe Barra (1) r> Rodrigo Espinoza-González (2) r> Henry Fernández (1) r> Fernando Lund (1) r> Agnès Maurel (3) r> Vincent Pagneux (4) r>r>1. Departamento de Física and CIMAT, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile r> 2. Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile r> 3. Institut Langevin, ESPCI, 1 rue Jussieu, Paris, 75005, France r> 4. LAUM, UMR CNRS 6613, Av. O. Messiaen, 72085, Le Mans Cedex 9, France r>
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistryr>Materials Sciencer>Metallic Materialsr>Nanotechnologyr>Crystallographyr>
  • 出版者:Springer Boston
  • ISSN:1543-1851
文摘
Dislocations are at the heart of the plastic behavior of materials yet they are very difficult to probe experimentally. Lack of a practical nonintrusive measuring tool for, say, dislocation density, seriously hampers modeling efforts, as there is little guidance from data in the form of quantitative measurements, as opposed to visualizations. Dislocation density can be measured using transmission electron microscopy (TEM) and x-ray diffraction (XRD). TEM can directly show the strain field around dislocations, which allows for the counting of the number of dislocations in a micrograph. This procedure is very laborious and local, since samples have to be very small and thin, and is difficult to apply when dislocation densities are high. XRD relies on the broadening of diffraction peaks induced by the loss of crystalline order induced by the dislocations. This broadening can be very small, and finding the dislocation density involves unknown parameters that have to be fitted with the data. Both methods, but especially TEM, are intrusive, in the sense that samples must be especially treated, mechanically and chemically. A nonintrusive method to measure dislocation density would be desirable. This paper reviews recent developments in the theoretical treatment of the interaction of an elastic wave with dislocations that have led to formulae that relate dislocation density to quantities that can be measured with samples of cm size. Experimental results that use resonant ultrasound spectroscopy supporting this assertion are reported, and the outlook for the development of a practical, nonintrusive, method to measure dislocation density is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700