Combination of Pretreatment with White Rot Fungi and Modification of Primary and Secondary Cell Walls Improves Saccharification
详细信息    查看全文
  • 作者:Charis Cook (1) (3)
    Fedra Francocci (2)
    Felice Cervone (2)
    Daniela Bellincampi (2)
    Paul G Bolwell (1)
    Simone Ferrari (2)
    Alessandra Devoto (1)

    1. School of Biological Sciences
    ; Royal Holloway University of London ; Egham ; Surrey ; TW20 0EX ; UK
    3. School of Life Sciences
    ; Gibbet Hill Campus ; The University of Warwick ; Coventry ; CV4 7AL ; UK
    2. Dipartimento di Biologia e Biotecnologie 鈥楥harles Darwin鈥? Universit脿 di Roma 鈥楲a Sapienza鈥? Piazzale Aldo Moro 5
    ; 00185 ; Rome ; Italy
  • 关键词:Cell wall ; Lignin ; Pectin ; White rot fungi ; Phanerochaete chrysosporium ; Trametes cingulata
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:175-186
  • 全文大小:632 KB
  • 参考文献:1. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235鈥?238. doi:10.1126/science.1152747 CrossRef
    2. B枚rjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective鈥攚hat determines this? Appl Energy 86(5):589鈥?94 CrossRef
    3. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53鈥?8. doi:10.1146/annurev.cellbio.22.022206.160206 CrossRef
    4. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564(1鈥?):183鈥?87. doi:10.1016/S0014-5793(04)00346-1 CrossRef
    5. Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105鈥?08:87鈥?00 CrossRef
    6. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621鈥?651. doi:10.3390/ijms9091621 CrossRef
    7. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10鈥?8. doi:10.1016/j.biortech.2008.05.027 CrossRef
    8. Grabber JHRJ, Hatfield RD, Quideau S (1997) P-hydroxyphenyl, guaiacyl and syringyl lignins have similar inhibitory effects on wall degradability. J Agric Food Chem 45(7):2530鈥?532 CrossRef
    9. Keating JD, Panganiban C, Mansfield SD (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93(6):1196鈥?206. doi:10.1002/bit.20838 CrossRef
    10. Mes-Hartree MDB, Craig WK (1988) Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Appl Microbiol Biotechnol 29(5):462鈥?68 CrossRef
    11. Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TD (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113(3):521鈥?30. doi:10.1111/j.1365-2672.2012.05352.x CrossRef
    12. Cook C, Devoto A (2011) Fuel from plant cell walls: recent developments in second generation bioethanol research. J Sci Food Agric 91(10):1729鈥?732. doi:10.1002/Jsfa.4455 CrossRef
    13. Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6(5):815鈥?21. doi:10.1039/b908966g CrossRef
    14. M眉ller HW, Tr枚sch W (1986) Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl Microbiol Biotechnol 24(2):180鈥?85 CrossRef
    15. Kirk TK, Farrell RL (1987) Enzymatic 鈥渃ombustion鈥? the microbial degradation of lignin. Annu Rev Microbiol 41:465鈥?05. doi:10.1146/annurev.mi.41.100187.002341 CrossRef
    16. Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81(3):399鈥?17. doi:10.1007/s00253-008-1706-9 CrossRef
    17. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104(3):471鈥?82. doi:10.1002/bit.22423 CrossRef
    18. Shrestha P, Rasmussen M, Khanal SK, Pometto AL 3rd, van Leeuwen JH (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56(11):3918鈥?924. doi:10.1021/jf0728404 CrossRef
    19. Shi J, Sharma-Shivappa RR, Chinn MS (2009) Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour Technol 100(19):4388鈥?395. doi:10.1016/j.biortech.2008.10.060 CrossRef
    20. Zeng J, Singh D, Chen S (2011) Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresour Technol 102(3):3206鈥?214. doi:10.1016/j.biortech.2010.11.008 CrossRef
    21. Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102(16):7500鈥?506. doi:10.1016/j.biortech.2011.05.027 CrossRef
    22. Hori CGJ, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D (2013) Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 105(6):1412鈥?427 CrossRef
    23. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578鈥?95 CrossRef
    24. Hori CIK, Katayama A, Samejima M (2011) Effects of xylanand starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321(1):14鈥?3 CrossRef
    25. Haemmerli SD, Leisola MS, Sanglard D, Fiechter A (1986) Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem 261(15):6900鈥?903
    26. Hammel KEKA, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood deacay by fungi. Enzym Microb Technol 30(4):445鈥?53 CrossRef
    27. Nutsubidze NNSS, Schmidt EL, Shashikanth S (1998) Consecutive polymerization and depolymerization of kraftlignin by Trametes cingulata. Phytochemistry 49:1203鈥?212 CrossRef
    28. Zuchowski J, Pecio L, Jaszek M, Stochmal A (2013) Solid-state fermentation of rapeseed meal with the white-rot fungi Trametes versicolor and Pleurotus ostreatus. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0506-6
    29. Gonzalez JC, Medina SC, Rodriguez A, Osma JF, Almeciga-Diaz CJ, Sanchez OF (2013) Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. PLoS ONE 8(9):e73721. doi:10.1371/journal.pone.0073721 CrossRef
    30. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759鈥?61. doi:10.1038/nbt1316 CrossRef
    31. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50(6):1075鈥?089. doi:10.1093/pcp/pcp060 CrossRef
    32. Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Nishida K, Kanaya T, Shani Z, Shoseyov O, Hayashi T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol Plant 2(5):904鈥?09. doi:10.1093/mp/ssp060 CrossRef
    33. Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR, Dupree P (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci U S A 107(40):17409鈥?7414. doi:10.1073/pnas.1005456107 CrossRef
    34. Gomez LD, Whitehead C, Barakate A, Halpin C, McQueen-Mason SJ (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 3:23. doi:10.1186/1754-6834-3-23 CrossRef
    35. Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D鈥橭vidio R, De Lorenzo G, Cervone F (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci U S A 107(2):616鈥?21. doi:10.1073/pnas.0907549107 CrossRef
    36. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108(15):6300鈥?305. doi:10.1073/pnas.1009252108 CrossRef
    37. LA Jackson SG, Zhou R, Nakashima J, Chen F, Dixon RA (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg Res 1(3鈥?):180鈥?92 CrossRef
    38. Blee KA, Choi JW, O鈥機onnell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64(1):163鈥?76 CrossRef
    39. Cook CM, Daudi A, Millar DJ, Bindschedler LV, Khan S, Bolwell GP, Devoto A (2012) Transcriptional changes related to secondary wall formation in xylem of transgenic lines of tobacco altered for lignin or xylan content which show improved saccharification. Phytochemistry 74:79鈥?9. doi:10.1016/j.phytochem.2011.10.009 CrossRef
    40. Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143(4):1871鈥?880. doi:10.1104/pp. 106.090803 CrossRef
    41. Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet AM, Joseleau JP, Bolwell GP (2007) Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68(21):2635鈥?648. doi:10.1016/j.phytochem.2007.08.029 CrossRef
    42. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105鈥?08:27鈥?1 CrossRef
    43. Tien M, Ma D (1997) Oxidation of 4-methoxymandelic acid by lignin peroxidase. Mediation by veratryl alcohol. J Biol Chem 272(14):8912鈥?917 CrossRef
    44. Fry S (1988) The growing plant cell wall: chemical and metabolic analysis. The Blackburn Press, Caldwell
    45. O鈥機onnell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11(5):495鈥?03 CrossRef
    46. Blee KA, Wheatley ER, Bonham VA, Mitchell GP, Robertson D, Slabas AR, Burrell MM, Wojtaszek P, Bolwell GP (2001) Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters. Planta 212(3):404鈥?15 CrossRef
    47. Tarkka MT, Schrey S, Nehls U (2006) The alpha-tubulin gene Am Tuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49(5):294鈥?01. doi:10.1007/s00294-006-0056-3 CrossRef
    48. Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C (2006) Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223(5):965鈥?74. doi:10.1007/s00425-005-0153-4 CrossRef
    49. Daudi A, Cheng Z, O鈥橞rien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275鈥?87. doi:10.1105/tpc.111.093039 CrossRef
    50. Cook C, Bolwell PG, Devoto A (2012) Engineering plant cell walls for second generation biofuel production. Pharm Biol 50(5):670鈥?70
    51. Chanliaud EGM (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25鈥?5 CrossRef
    52. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266鈥?77. doi:10.1016/j.pbi.2008.03.006 CrossRef
    53. Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6(1):46. doi:10.1186/1754-6834-6-46 CrossRef
    54. Selig M WNaJY (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure
    55. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695鈥?00. doi:10.1038/nbt967 CrossRef
    56. Herrero J, Esteban-Carrasco A, Zapata JM (2013) Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol Biochem 67:77鈥?6. doi:10.1016/j.plaphy.2013.02.019 CrossRef
    57. Shigeto J, Kiyonaga Y, Fujita K, Kondo R, Tsutsumi Y (2013) Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J Agric Food Chem 61(16):3781鈥?788. doi:10.1021/jf400426g CrossRef
    58. Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA (2010) Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification. Phytochemistry 71(5鈥?):531鈥?42. doi:10.1016/j.phytochem.2010.01.008 CrossRef
    59. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J Vis Exp (37). doi:10.3791/1837
    60. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6):1349 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Plant cell walls have protective and structural functions conferring resistance to degradation. The lignin and hemicellulose network surrounding the cellulose microfibrils is insoluble unless subjected to harsh treatments. As lignin, pectin and xylan are effective barriers to cellulose extraction and hydrolysis, reducing their presence in cell walls improves saccharification. Microorganisms that can depolymerise lignin are of extreme interest to the biofuel industry. White rot fungi can be effective in pretreatment of lignocellulosic biomass prior to saccharification. Here, we show the cumulative effects of pretreating biomass with two white rot fungi, Phanerochaete chrysosporium and Trametes cingulata, on tobacco lines with reduced lignin or xylan, caused by suppression of the CINNAMOYL-CoA REDUCTASE, CINNAMATE-4-HYDROXYLASE, TOBACCO PEROXIDASE 60 or UDP-GLUCURONATE DECARBOXYLASE and on Arabidopsis thaliana with reduced de-esterified homogalacturonan content, obtained by overexpressing a pectin methyl esterase inhibitor or constitutively expressing the Aspergillus niger POLYGALACTURONASE II gene. Tests were extended to fresh material from an Arabidopsis mutant for a cell wall peroxidase. We demonstrate that fungal pretreatment is a reliable method of improving cellulose accessibility in biofuel feedstocks, fresh material and cell wall residues from different plants. These results contribute to the understanding of the consequences of primary and secondary cell wall perturbations on lignocellulosic biomass accessibility to white rot fungi and on saccharification yield. A comparison of the effects of P. chrysosporium and T. cingulata on tobacco saccharification also highlights the limitation of current knowledge in this research field and the necessity to systematically test culture conditions to avoid generalisations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700