Unusual magma storage conditions at Mt. Etna (Southern Italy) as evidenced by plagioclase megacryst-bearing lavas: implications for the plumbing system geometry and summit caldera collapse
详细信息    查看全文
  • 作者:Eugenio Nicotra (1)
    Marco Viccaro (1) m.viccaro@unict.it
  • 关键词:Etna – ; Plagioclase megacryst – ; Cicirara – ; Texture – ; Crystallization – ; Magma chamber – ; Ascent dynamics – ; Caldera collapse
  • 刊名:Bulletin of Volcanology
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:74
  • 期:4
  • 页码:795-815
  • 全文大小:1.7 MB
  • 参考文献:1. All猫gre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: a pathological case of crystal growth. Nature 294:223–229
    2. Aloisi M, Cocina O, Neri G, Orecchio B, Privitera E (2002) Seismic tomography of the crust underneath the Etna volcano, Sicily. Phys Earth Planet Int 134:139–155
    3. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of 1991–93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414
    4. Armienti P, Pareschi MT, Pompilio M (1997) Lava textures and time scales of magma storage at Mt. Etna (Italy). Acta Vulcanol 9:1–5
    5. Blundy JD, Cashman KV (2001) Ascent-driven crystallization of dacite magmas at Mount St. Helens, 1980–1986. Contrib Mineral Petrol 140:631–650
    6. Blundy JD, Cashman KV (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens Volcano. Geol 33:793–796
    7. Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behaviour. Bull Volcanol 67:732–742
    8. Branca S, Coltelli M, De Beni E, Wijbrans J (2008) Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Int J Earth Sci 97:135–152
    9. Cardaci C, Coviello M, Lombardo G, Patan猫 G, Scarpa R (1993) Seismic tomography of Etna volcano. J Volcanol Geotherm Res 56:357–368
    10. Cashman KV (1990) Textural constraints on the kinetics of crystallization of igneous rocks. In: Nicholls J, Russell JK (eds) Reviews in Mineralogy and Geochemistry, vol. 24, Modern methods of igneous petrology, understanding magmatic process. Mineralogical Society of America, Washington, D.C
    11. Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305
    12. Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna: the Anatomy of a volcano. Chapman and Hall, London, pp 65–123
    13. Chester DK, Duncan AM, Guest JE (1987) The pyroclastic deposits of Mount Etna volcano, Sicily. Geol J 22:225–243
    14. Chiarabba C, De Gori P, Patan猫 D (2004) The Mt. Etna plumbing system: the contribution of seismic tomography. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mt. Etna volcano laboratory, vol 143. AGU Geophysical Monograph Series, Washington, pp 191–204
    15. Clocchiatti R, Joron JL, Treuil M (1988) The role of selective alkali contamination in the evolution of recent historic lavas of Mount Etna. J Volcanol Geotherm Res 34:241–249
    16. Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40:105–132
    17. Cocina O, Neri G, Privitera E, Spampinato S (1997) Stress tensor computations in the Mount Etna area (Southern Italy) and tectonic implications. J Geodyn 23:109–127
    18. Cocina O, Neri G, Privitera E, Spampinato S (1998) Seismogenic stress field beneath Mt. Etna (South Italy) and possible relationships with volcano-tectonic features. J Volcanol Geotherm Res 83:335–348
    19. Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26
    20. Coltelli M, Gardu帽o VH, Neri M, Pasquar猫 G, Pompilio M (1994) Geology of the northern wall of the Valle del Bove, Mt. Etna (Sicily). Acta Vulcanol 5:55–68
    21. Coltelli M, Del Carlo P, Vezzoli L (1998) The discovery of a Plinian basaltic eruption of Roman age at Mt. Etna volcano (Italy). Geology 26:1095–1098
    22. Coltelli M, Del Carlo P, Vezzoli L (2000) Stratigraphic constraints for explosive activity in the past 100 ka at Etna volcano, Italy. Int J Earth Sci 89:665–677
    23. Corsaro RA, Cristofolini R (1993) Nuovi dati petrochimici ed isotopici sulla successione del Mongibello Recente (M.te Etna). Boll Acc Gioenia Sci Nat 26:185–225
    24. Corsaro RA, Cristofolini R (1996) Origin and differentiation of recent basaltic magmas from Mount Etna. Mineral Petrol 57:1–21
    25. Corsaro RA, Cristofolini R, Patan猫 L (1996) The 1669 eruption at Mount Etna: chronology, petrology and geochemistry, with inferences on the magma sources and ascent mechanisms. Bull Volcanol 58:348–358
    26. Cristofolini R, Romano R (1982) Petrologic features of Etnean volcanic rocks. Mem Soc Geol Ital 23:99–115
    27. Cristofolini R, Lentini F, Patan猫 G, Ras脿 R (1979) Integrazione di dati geologici, geofisici e petrologici per la stesura di un profilo crostale in corrispondenza dell’Etna. Boll Soc Geol Ital 98:239–247
    28. Cristofolini R, Ghisetti F, Scarpa R, Vezzani L (1985) Character of the stress field in the Calabrian arc and southern Apennines (Italy) as deduced by geological, seismological and volcanological information. Tectonophysics 117:39–58
    29. Cristofolini R, Corsaro RA, Ferlito C (1991) Variazioni petrochimiche nella successione etnea: un riesame in base a nuovi dati da campioni di superficie e da sondaggi. Acta Vulcanol 1:25–37
    30. D’Orazio M, Tonarini S, Innocenti F, Pompilio M (1997) Northern Valle del Bove volcanic succession Mt. Etna, Sicily: petrography, geochemistry and Sr-Nd isotope data. Acta Vulcanol 9:8–16
    31. D’Orazio M, Armienti P, Cerretini S (1998) Phenocryst/matrix trace-element partition coefficients for hawaiite-trachyte lavas from the Ellittico volcanic sequence (Mt. Etna, Sicily, Italy). Mineral Petrol 64:65–88
    32. Davidson JP, Tepley FJ (1997) Recharge in volcanic systems: evidence from isotope profiles of phenocrysts. Science 275:826–829
    33. De Rita D, Frazzetta G, Romano R (1991) The Biancavilla-Montalto ignimbrite (Etna, Sicily). Bull Volcanol 53:121–131
    34. Ferlito C, Cristofolini R (1989) Geologia dell’area sommitale dell’Etna. Boll Acc Gioenia Sci Nat 22:357–380
    35. Ferlito C, Viccaro M, Cristofolini R (2008) Volatile induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of 2001 the eruption. Bull Volcanol 70:455–473
    36. Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2011) Regimes of magma recharge and their role on the eruptive behaviour during the period 2001–2005 at Mt. Etna volcano. Bull Volcanol. doi:10.1007/s00445-011-0537-1
    37. Feulliet N, Cocco M, Musumeci C, Nostro C (2006) Stress interaction between seismic and volcanic activity at Mt Etna. Geophys J Int 164:697–718
    38. Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effect in X-ray fluorescence analysis. X-ray Spectr 1:151–154
    39. Gillot PY, Kieffer G, Romano R (1994) The evolution of Mount Etna in the light of potassium–argon dating. Acta Vulcanol 5:81–87
    40. Ginibre C, W枚rner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98:118–140
    41. Ginibre C, Kronz A, W枚rner G (2002) High resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib Mineral Petrol 142:436–448
    42. Haase CS, Chadam J, Feinn D, Ortoleva P (1980) Oscillatory zoning in plagioclase feldspar. Science 209:272–274
    43. Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 8:1–24
    44. Helz RT (1987) Differentiation behavior of Kilauea Iki lava lake, Kilauea Volcano, Hawaii: an overview of past and current work. In: Mysen BO (Ed) Magmatic Processes: Physiochemical Principles, Geochemical Society Special Publications 1:241–258
    45. Hughes JW, Guest JE, Duncan AM (1990) Changing styles of effusive eruption on Mont Etna since AD 1600. In: Ryan MP (ed) Magma transport and storage. Wiley, New York, pp 385–406
    46. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocrysts zoning. J Petrol 47:2303–2334
    47. Kamenetsky V, Clocchiatti R (1996) Primitive magmatism of Mt. Etna: insights from mineralogy and melt inclusions. Earth Planet Sci Lett 142:553–572
    48. Kieffer C (1970) Le depots detritiques et pyroclastiques du versant oriental de l’Etna. Boll Acc Gioenia Sci Nat 2:3–32
    49. Kirkpatrick RJ (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae Lava Lakes, Kilauea Volcano, Hawaii. Geol Soc Am Bull 88:78–84
    50. Kirkpatrick RJ, Klein LM, Uhlman DR, Hays JF (1979) Rates and processes of crystal growth in the system anorthite-albite. J Geophys Res 84:3671–3676
    51. L’Heureux I, Fowler AD (1994) A nonlinear dynamical model of oscillatory zoning in plagioclase. Am Mineral 79:885–891
    52. L’Heureux I, Fowler AD (1996a) Isothermal constitutive undercooling as a model of oscillatory zoning in plagioclase. Can Mineral 34:1137–1147
    53. L’Heureux I, Fowler AD (1996b) Dynamical model of oscillatory zoning with non linear partition relation. Geophys Res Lett 23:17–20
    54. Lasaga AC (1982) Toward a master equation in crystal growth. Am J Sci 282:1264–1288
    55. Le Maitre RW (2002) A classification of igneous rocks and glossary of terms. University Press, Cambridge
    56. Lentini F (1982) The geology of the Mt. Etna basement. Mem Soc Geol 23:7–25
    57. Lofgren GE (1974a) An experimental study of plagioclase crystal morphology: isothermal crystallization. Am J Sci 274:243–273
    58. Lofgren GE (1974b) Temperature induced zoning in synthetic plagioclase feldspar. In: Mackenzie WS, Zussman J (eds) The feldspar. Manchester University Press, Manchester, pp 362–375
    59. Lofgren GE (1980) Experimental studies on the dynamic crystallization of silicate melts, Chapter 11. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, New Jersey
    60. Loomis TP (1982) Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contrib Mineral Petrol 81:219–229
    61. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation I. Theory. Contrib Mineral Petrol 99:277–291
    62. M茅trich N, Clocchiatti R (1989) Melt inclusion investigation of the volatile behavior in historic alkaline magmas on Etna. Bull Volcanol 51:185–198
    63. Michaud V (1995) Crustal xenoliths in recent hawaiites from Mount Etna, Italy—evidence for alkali exchanges during magma–wall rock interaction. Chem Geol 122:21–42
    64. Monaco C, Catalano S, Cocina O, De Guidi G, Ferlito C, Gresta S, Musumeci C, Tortorici L (2005) Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the, 2001 and 2002–2003 eruptions. J Volcanol Geotherm Res 144:211–233
    65. Monaco C, De Guidi G, Ferlito C (2011) The morphotectonic map of Mt. Etna. Ital J Geosci 129:408–428
    66. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussmann J, Aoki K, Gottardi G (1998) Nomenclature of pyroxenes. Am Mineral 73:1123–1133
    67. Murru M, Montuori C, Wyss M, Privitera E (1999) The locations of magma chambers at Mt. Etna, Italy, mapped by b-values. Geophys Res Lett 26:2553–2556
    68. Nazzareni S, Bus脿 T, Cristofolini R (2003) Magmatic crystallisation of Cr-Al diopside and Al-Fe3+ diopside from the ancient alkaline basalts (Mt. Etna, Sicily). Eur J Mineral 15:81–93
    69. Nelson ST, Montana A (1992) Sieve-textured plagioclases in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249
    70. Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O-CO2 solution model written in Visual Basic Excel. Comp Geosci 2:597–604
    71. Nicotra E (2010) Genesis and differentiation of Mt. Etna magmas (Ellittico volcano, 45–15ka): a multidisciplinary approach from geology to melt inclusions. PhD Thesis, Universit脿 di Catania, pp 228
    72. Nicotra E, Viccaro M, Ferlito C, Cristofolini R (2010) Influx of volatiles into shallow reservoirs at Mt. Etna volcano (Italy) responsible for halogen-rich magmas. Eur J Mineral 22:121–138
    73. Ortoleva PJ (1990) Role of attachment kinetic feedback in the oscillatory zoning of crystals growth from melts. Earth Sci Rev 29:3–8
    74. Patan猫 D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313:821–823
    75. Pearce TH (1994) Recent work on oscillatory zoning in plagioclase. In: Parson I (ed) Feldspar and their relations. Kluwer, Dordrecht, pp 313–349
    76. Pearce TH, Kolisnik AM (1990) Observation of plagioclase zoning using interference imaging. Earth Sci Rev 29:9–26
    77. Pearce TH, Russel JK, Wolfson I (1987) Laser-interference and Nomarsky interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. Am Mineral 72:1131–1143
    78. Putirka K (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am Mineral 90:336–346
    79. Putirka KD, Tepley FJ (2008) Minerals, inclusions and volcanic processes. Reviews in Mineralogy and Geochemistry, vol. 69, Mineralogical Society of America, Washington, D.C., 674 pp
    80. Rittmann A (1973) Structure and evolution of Mount Etna. Phil Trans R Soc London 274:5–16
    81. Romano R (1982) Succession of the volcanic activity in the Etnean area. Mem Soc Geol 23:27–48
    82. Romano R, Sturiale C (1982) The historical eruptions of Mt. Etna (volcanological data). Mem Soc Geol 23:75–97
    83. Sartorius von Waltershausen W (1880) Der Aetna. Engelmann (Ed), Leipzig, vol 1–2 pp 370–548
    84. Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc–alkaline magma chamber. Am Mineral 80:776–798
    85. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc–alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166
    86. Stormer JC, Nicholls J (1978) XLFRAC a program for interactive testing of magmatic differentiation models. Comput Geosci 4:143–159
    87. Tanguy JC, Clocchiatti R (1984) The Etnean lavas, 1977–1983: petrology and mineralogy. Bull Volcanol 47:879–894
    88. Tanguy JC, Condomines M, Kieffer G (1997) Evolution of Mount Etna magma: constraint on the present feeding system and eruptive mechanism. J Volc Geotherm Res 75:221–250
    89. Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and the origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16
    90. Viccaro M, Cristofolini R (2008) Nature of mantle heterogeneity and its role in the short-term geochemical and volcanological evolution of Mt. Etna (Italy). Lithos 105:272–288
    91. Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2006) Magma mixing during the 2001 event at Mt. Etna (Italy): effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159
    92. Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91
    93. Viccaro M, Nicotra E, Millar IL, Cristofolini R (2011) The magma source at Mount Etna volcano: perspectives from the Hf isotope composition of historic and recent lavas. Chem Geol 281:343–351
    94. Villari L, Ras脿 R, Caccamo A (1988) Considerazioni sull’hazard vulcanico e sul campo di sforzi nella regione Etna attraverso l’analisi morfometrica e la distribuzione plano-altimetrica dei coni avventizi. Boll GNV 4:600–619
    95. Villase帽or A, Benz HM, Filippi L, De Luca G, Scarpa R, Patan猫 G (1998) Three-dimensional P-wave velocity structure of Mt. Etna, Italy. Geophys Res Lett 25:1975–1978
    96. Wang JH, Wu JP (1995) Oscillatory zonation of minerals and self-organization in silicate solid-solution system: a new nonlinear dynamic model. Eur J Mineral 7:1089–1100
  • 作者单位:1. Dipartimento di Scienze Geologiche, Universit脿 di Catania, Corso Italia 57, I-95129 Catania, Italy
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Geophysics and Geodesy
    Mineralogy
    Sedimentology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0819
文摘
At Mt. Etna volcano, the emission of plagioclase megacryst-bearing lavas, known locally as “cicirara”, has occurred rarely and generally in association with unusual volcanological phenomena. In this work, we interpret the magma chamber processes and the structural features of the plumbing system that led to the production of these peculiar volcanic rocks, based on a detailed study of plagioclase megacrysts, including their oscillatory zoning, sieve textures, and fluid inclusions. Patchy zoning suggests limited ascent in the deep levels of the plumbing system, based on the plagioclase nucleation threshold and the volatile saturation depth. At intermediate, water-undersaturated levels of the plumbing system ascent is faster, as indicated by crystals with coarse sieve textures. Storage at shallow, water-saturated levels (less than 6 km deep) is associated with oscillatory zoning with very small changes in An. Slightly larger An variations coupled with different wavelengths provide evidence of convection of crystals across distinct zones of the chamber. Stripes of melt inclusions formed at steps of magma ascent and volatile loss, whereas layers of fluid inclusions may be related to episodes of volatile flushing into the magma chamber. In contrast, strongly sieve-textured envelopes with An increase and constant FeO may be related to mixing with more volatile-rich magmas of similar composition. We interpret the repeated occurrence of “cicirara” lavas as evidence that the shallow portion of the plumbing system underwent a progressive coalescence of a complex network of dykes and sills in response to increasing rates of magma supply from depth. Major magma withdrawals from this larger reservoir may be linked to episodes of summit instability associated with major caldera collapses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700