Packet Forwarding Assurance in Delay Tolerant Networks
详细信息    查看全文
  • 作者:Hanjin Park (1)
    Yusung Kim (2)
    Euiyul Ko (3)
    Ikjun Yeom (2)

    1. Department of Computer Science
    ; KAIST ; Daejeon ; Republic of Korea
    2. Department of Computer Engineering
    ; Sungkyunkwan University ; Seoul ; Republic of Korea
    3. Affective Computing in Real Life
    ; KAIST ; Daejeon ; Republic of Korea
  • 关键词:Delay tolerant networks ; Differentiated service ; Assured forwarding ; Quality of service
  • 刊名:Wireless Personal Communications
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:82
  • 期:1
  • 页码:353-376
  • 全文大小:976 KB
  • 参考文献:1. http://www.ietf.org
    2. Balasubramanian, A, Levine, B, Venkataramani, A (2010) Replication routing in dtns: A resource allocation approach. IEEE/ACM Transaction on Networking 18: pp. 596-609 CrossRef
    3. Benamar, N, Singh, KD, Benamar, M, Ouadghiri, DE, Bonnin, JM (2014) Routing protocols in vehicular delay tolerant networks: A comprehensive survey. Computer Communications 48: pp. 141-158 CrossRef
    4. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss, W. (1998). An architecture for differentiated services. Network Working Group, RFC, 2475.
    5. Boldrini, C., Conti, M., Jacopini, J., & Passarella, A. (2007). Hibop: A history based routing protocol for opportunistic networks. In / Proceedings of WoWMoM.
    6. Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant manets. In / Proceedings of ACM MobiHoc.
    7. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In: / Proceedings of ACM SIGCOMM.
    8. Go, Y., Moon, Y., Nam, G., & Park, K. (2012). A disruption-tolerant transmission protocol for practical mobile data offloading. In: / Proceedings of ACM MobiOpp.
    9. Harri, J, Filali, F, Bonnet, C (2009) Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys Tutorials 11: pp. 19-41 CrossRef
    10. Heinanen, J., Baker, F., Weiss, W., & Wrocklawski, J. (1999). Assured forwarding PHB group. Network Working Group, RFC 2597.
    11. Huang, H., Zhu, Y., Li, X., Li, M., & Wu, M. Y. (2010). Meta: A mobility model of metropolitan taxis extracted from gps traces. In: / Proceedings of IEEE WCNC.
    12. Hui, P, Crowcroft, J, Yoneki, E (2011) Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing 10: pp. 1576-1589 CrossRef
    13. Ivancic, W., Eddy, W. M., Wood, L., Stewart, D., Jackson, C., Northam, J., et al. (2008). Delay/diruption-tolerant network testing using a leo satellite. In / Proceedings of ESTC.
    14. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In / Proceedings of ASPLOS-X.
    15. Kesidis, G., Konstantopoulos, T., & Phoha, S. (2003). Surveillance coverage of sensor networks under a random mobility strategy. In / Proceedings of IEEE sensors.
    16. Ko, E., Park, H., & Yeom, I. (2010). A new event-driven network simulator for delay-tolerant networks(dtns). In / Proceedings of SIMUTools.
    17. Krifa, A., Baraka, C., & Spyropoulos, T. (2008). Optimal buffer management policies for delay tolerant networks. In / Proceedings of IEEE SECON.
    18. Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2009). Slaw: A new mobility model for human walks. In / Proceedings of IEEE INFOCOM.
    19. Lee, K., Lee, J., Yi, Y., Rhee, I., & Chong, S. (2012). Mobile data offloading: How much can WiFi deliver? / IEEE/ACM Transaction on Networking, / 21(2), 536鈥?50.
    20. Lee, K., Yi, Y., Jeong, J., Won, H., Rhee, I., & Chong, S. (2010). Max-contribution: On optimal resource allocation in delay tolerant networks. In / Proceedings of IEEE INFOCOM.
    21. Li, Y, Qian, M, Jin, D, Hui, P, Wang, Z, Chen, S (2014) Multiple mobile data offloading through disruption tolerant networks. IEEE Transactions on Mobile Computing 13: pp. 1579-1596 CrossRef
    22. Li, Z., & Shen, H. (2008). A direction based geographic routing scheme for intermittently connected mobile networks. In / Proceedings of IEEE EUC.
    23. Lindgren, A., Doria, A., & Schel茅n, O. (2003). Probabilistic routing in intermittently connected networks. / ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19鈥?0.
    24. Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In / Proceedings of COMSWARE.
    25. Liu, H., Srinivasan, A., Whitehouse, K., & Stankovic, J. (2010). Supporting heterogeneous qos requirements in delay tolerant sensor networks. In / Proceedings of INSS.
    26. Mtibaa, A., May, M., Diot, C., & Ammar, M. (2010). Peoplerank: Social opportunistic forwarding. In / Proceedings of IEEE INFOCOM.
    27. Pentland, A, Fletcher, R, Hasson, A (2004) Daknet: Rethinking connectivity in developing nations. Computer 37: pp. 78-83 CrossRef
    28. Ramanathan, P., & Singh, A. (2008). Delay-differentiated gossiping in delay tolerant networks. In / Proceedings of IEEE ICC.
    29. Scott, K., & Burleigh, S. (2007). Bundle protocol specification. Network Working Group. RFC 5050.
    30. Seber, G (1982) The estimation of animal abundance and related parameters. Macmillan Publishing Co., NewYork, NY
    31. Spyropoulos, T, Psounis, K, Raghavendra, CS (2008) Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transaction of Networking 16: pp. 77-90 CrossRef
    32. Tseng, Y., Kang, S., Su, Y., Lee, C., & Chang, J. (2010). / Proceedings of IEEE/RSJ IROS.
    33. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. In: / Duke University technical report CS-2000-06.
    34. Wang, Y, Wu, H (2007) Delay/fault-tolerant mobile sensor network (dft-msn): A new paradigm for pervasive information gathering. IEEE Transactions on Mobile Computing 6: pp. 1021-1034 CrossRef
    35. Zhang, M., Wu, J., Lin, C., & Xu, K. (2003). Wsap: Provide loss rate differentiation with active queue management. In: / Proceeding of ICCT.
    36. Zhang, X., Kurose, J., Levine, B. N., Towsley, D., & Zhang, H. (2007). Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: / Proceedings of ACM MobiCom.
    37. Zhang, X, Neglia, G, Kurose, J, Towsley, D (2007) Performance modeling of epidemic routing. Computer Networks 51: pp. 2867-2891 CrossRef
    38. Zhu, Y, Xu, B, Shi, X, Wang, Y (2013) A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys Tutorials 15: pp. 387-401 CrossRef
    39. Zucchini, W, Channing, A (1986) Bayesian estimation of animal adundance in small population using capture鈥搑ecapture information. South Africa Journal of Science 82: pp. 137-140
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Processor Architectures
  • 出版者:Springer Netherlands
  • ISSN:1572-834X
文摘
In conventional TCP/IP networks, there is a differentiated service architecture for providing different levels of services. Similarly in Delay Tolerant Networks (DTNs), we need to provide differentiated services where the network resources are limited, particularly in buffer size. Since DTNs have their own network characteristics, such as multiple copy routings, and intermittently connection, the traditional differentiated service architecture does not apply. In this paper, we propose two simple schemes to provide a packet forwarding assurance in DTNs. The two proposed schemes are an absolute differentiation scheme, and a relative differentiation scheme. These schemes have a prioritization process when a packet is dropped from the local buffer at each node to provide a high priority to Assured Forwarding (AF) packet and a low priority to Best Effort packet. We show that the proposed algorithms can dynamically find the appropriate target delivery ratio for AF packets, which can provide forwarding assurance for AF packets while avoiding starvation of BE packets, without any global information even though network conditions are changing. We believe that our study is the initial step toward exploiting differentiation services in DTNs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700